Skip to main content
Log in

Jellyfish bio-inspired Fe@CNT@CuNC derived from ZIF-8 for cathodic oxygen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Biomimetics provides guidance to design and synthesize advanced catalysts for oxygen reduction reaction in microbial fuel cells (MFCs). Herein, jellyfish-inspired Fe clusters on carbon nanotubes connected with CuNC (Fe@CNT@CuNC) were designed and prepared by using zeolitic imidazolate framework (ZIF)-8 precursors to imitate the organic texture and function of jellyfish. The antibacterial effect of Cu+ ions depressed the growth of cathode biofilm to ensure rapid mass transport. Fe clusters and CuNC connected by CNTs accelerated the electron transfer from Fe to CuNC. The optimization of oxygen adsorption was caused by electron redistribution between sites of Fe and Cu. Jellyfish-like catalysts achieved a half-wave potential of 0.86 V and onset potential of 0.95 V vs. reversible hydrogen electrode (RHE). MFCs gained the maximum power density of 1600 mW·m−2 after 500 h measurement. This work provides insights into the special design of advanced catalysts based on bio-inspiration and biomimetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, Z. N.; Yang, A. Z.; Zhang, B. B.; Liu, B.; Zhu, J. W.; Tang, Y. W.; Qiu, X. Y. Coupling the atomically dispersed Fe-N3 sites with sub-5 nm Pd nanocrystals confined in N-doped carbon nanobelts to boost the oxygen reduction for microbial fuel cells. Adv. Funct. Mater. 2022, 32, 2107683.

    Article  CAS  Google Scholar 

  2. Cao, B. C.; Zhao, Z. P.; Peng, L. L.; Shiu, H. Y.; Ding, M. N.; Song, F.; Guan, X.; Lee, C. K.; Huang, J.; Zhu, D. et al. Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells. Science 2021, 373, 1336–1340.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Shao, C. F.; Wu, L. M.; Wang, Y. H.; Qu, K. G.; Chu, H. L.; Sun, L. X.; Ye, J. S.; Li, B. T.; Wang, X. J. Engineering asymmetric Fe coordination centers with hydroxyl adsorption for efficient and durable oxygen reduction catalysis. Appl. Catal. B: Environ. 2022, 316, 121607.

    Article  CAS  Google Scholar 

  4. Huang, S. T.; Geng, Y. X.; Xia, J.; Chen, D. Y.; Lu, J. M. NiCo alloy nanoparticles on a N/C dual-doped matrix as a cathode catalyst for improved microbial fuel cell performance. Small 2022, 18, 2106355.

    Article  CAS  Google Scholar 

  5. Chen, H. N.; Jiang, D. M.; Xie, H.; Liu, Y. X.; Li, S. S.; Wang, Y. Q. Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells. Environ. Sci.: Nano 2023, 10, 158–165.

    CAS  Google Scholar 

  6. Yang, W.; Chata, G.; Zhang, Y. D.; Peng, Y.; Lu, J. E.; Wang, N.; Mercado, R.; Li, J.; Chen, S. W. Graphene oxide-supported zinc cobalt oxides as effective cathode catalysts for microbial fuel cell: High catalytic activity and inhibition of biofilm formation. Nano Energy 2019, 57, 811–819.

    Article  CAS  Google Scholar 

  7. Lou, Y. W.; Liu, J. J.; Liu, M.; Wang, F. Hexagonal Fe2N coupled with N-doped carbon: Crystal-plane-dependent electrocatalytic activity for oxygen reduction. ACS Catal. 2020, 10, 2443–2451.

    Article  CAS  Google Scholar 

  8. Wang, Z.; Zhu, C.; Tan, H.; Liu, J.; Xu, L. L.; Zhang, Y. Q.; Liu, Y. P.; Zou, X. X.; Liu, Z.; Lu, X. H. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries. Adv. Funct. Mater. 2021, 31, 2104735.

    Article  CAS  Google Scholar 

  9. Sun, Y.; Dai, Y.; Duan, Y. Q.; Xu, X.; Lv, Y.; Yang, L.; Zou, J. L. Biofouling inhibition on nano-silver/ferrous sulfide/partly-graphitized carbon cathode with enhanced catalytic activity and durability for microbial fuel cells. Carbon 2017, 119, 394–402.

    Article  CAS  Google Scholar 

  10. Selvinsimpson, S.; Gnanamozhi, P.; Pandiyan, V.; Govindasamy, M.; Habila, M. A.; AlMasoud, N.; Chen, Y. Synergetic effect of Sn doped ZnO nanoparticles synthesized via ultrasonication technique and its photocatalytic and antibacterial activity. Environ. Res. 2021, 197, 111115.

    Article  CAS  PubMed  Google Scholar 

  11. Abdieva, G. A.; Patra, I.; Al-Qargholi, B.; Shahryari, T.; Chauhan, N. P. S.; Moghaddam-Manesh, M. An efficient ultrasound-assisted synthesis of Cu/Zn hybrid MOF nanostructures with high microbial strain performance. Front. Bioeng. Biotechnol. 2022, 10, 861580.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhong, K. Q.; Huang, L. Z.; Li, H.; Dai, Y.; Zhang, H. G.; Yang, R. Y.; Arulmani, S. R. B.; Liu, X. J.; Huang, L.; Yan, J. Enhanced oxygen reduction upon Ag/Fe Co-doped UiO-66-NH2-derived porous carbon as bacteriostatic catalysts in microbial fuel cells. Carbon 2021, 183, 62–75.

    Article  CAS  Google Scholar 

  13. Fan, X. Z.; Yahia, L. H.; Sacher, E. Antimicrobial properties of the Ag, Cu nanoparticle system. Biology 2021, 10, 137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nong, W. Y.; Cao, J. Q.; Li, Y. Q.; Qu, Z.; Sun, J.; Swale, T.; Yip, H. Y.; Qian, P. Y.; Qiu, J. W.; Kwan, H. S. et al. Jellyfish genomes reveal distinct homeobox gene clusters and conservation of small RNA processing. Nat. Commun. 2020, 11, 3051.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Valdés, Á.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872–9879.

    Article  Google Scholar 

  16. Pan, Q. R.; Lai, B. L.; Huang, L. J.; Feng, Y. N.; Li, N.; Liu, Z. Q. Regulating the electronic structure of Cu-Nx active sites for efficient and durable oxygen reduction catalysis to improve microbial fuel cell performance. ACS Appl. Mater. Interfaces 2023, 15, 1234–1246.

    Article  CAS  PubMed  Google Scholar 

  17. Lin, X. R.; Li, Q. Q.; Hu, Y. X.; Jin, Z. Y.; Reddy, K. M.; Li, K. K.; Lin, X.; Ci, L. J.; Qiu, H. J. Revealing atomic configuration and synergistic interaction of single-atom-based Zn-Co-Fe trimetallic sites for enhancing oxygen reduction and evolution reactions. Small 2023, 19, 2300612.

    Article  CAS  Google Scholar 

  18. Ding, Y. N.; Xie, L.; Zhou, W.; Sun, F.; Gao, J. H.; Yang, C. W.; Zhao, G. B.; Qin, Y. K.; Ma, J. Pulsed electrocatalysis enables the stabilization and activation of carbon-based catalysts towards H2O2 Production. Appl. Catal. B: Environ. 2022, 316, 121688.

    Article  CAS  Google Scholar 

  19. Li, S. A.; Feng, C.; Xie, Y. H.; Guo, C. Y.; Hassan, A.; Wang, J. D. Dicyandiamide-assisted synthesis of N-doped porous CoMn-Nx@N-C carbon nanotube composites via MOFs as efficient trifunctional electrocatalysts in the same electrolyte. Nanoscale 2023, 15, 1210–1220.

    Article  CAS  PubMed  Google Scholar 

  20. Yu, Q. P.; Liu, X. B.; Liu, G. S.; Wang, X. P.; Li, Z. J.; Li, B.; Wu, Z. X.; Wang, L. Constructing three-phase heterojunction with 1D/3D hierarchical structure as efficient trifunctional electrocatalyst in alkaline seawater. Adv. Funct. Mater. 2022, 32, 2205767.

    Article  CAS  Google Scholar 

  21. Zhang, L. J.; Gu, T. T.; Lu, K. L.; Zhou, L. J.; Li, D. S.; Wang, R. H. Engineering synergistic edge-N dipole in metal-free carbon nanoflakes toward intensified oxygen reduction electrocatalysis. Adv. Funct. Mater. 2021, 31, 2103187.

    Article  CAS  Google Scholar 

  22. Chen, S. Y.; Luo, T.; Li, X. Q.; Chen, K. J.; Fu, J. W.; Liu, K.; Cai, C.; Wang, Q. Y.; Li, H. M.; Chen, Y. et al. Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 2022, 144, 14505–14516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiong, Q.; Zheng, J. H.; Liu, B.; Liu, Y. J.; Li, H. M.; Yang, M. In-situ self-templating construction of FeNi/N Co-doped 3D porous carbon from bimetallic ions-coordinated porous organic polymer for rechargeable zinc-air batteries. Appl. Catal. B: Environ. 2023, 321, 122067.

    Article  CAS  Google Scholar 

  24. Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.

    Article  CAS  Google Scholar 

  25. Zhang, X. Y.; Zhu, S. F.; Song, L. L.; Xu, Y. X.; Wang, Y. Q. NiS gradient distribution on arrayed porous carbonized grapefruit peel for water splitting. Nanoscale 2023, 15, 3764–3771.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y.; Wang, M. W.; Zhu, W. X.; Fang, M. M.; Ma, M. J.; Liao, F.; Yang, H.; Cheng, T.; Pao, C. W.; Chang, Y. C. et al. Metastable hexagonal phase SnO2 nanoribbons with active edge sites for efficient hydrogen peroxide electrosynthesis in neutral media. Angew. Chem., Int. Ed. 2023, 62, e202218924.

    Article  CAS  Google Scholar 

  27. Noman, M.; Ahmed, T.; White, J. C.; Nazir, M. M.; Azizullah; Li, D. Y.; Song, F. M. Bacillus altitudinis-stabilized multifarious copper nanoparticles prevent bacterial fruit blotch in watermelon (Citrullus lanatus L.): Direct pathogen inhibition, in planta particles accumulation, and host stomatal immunity modulation. Small 2023, 19, 2207136.

    Article  CAS  Google Scholar 

  28. Kosimaningrum, W. E.; Le, T. X. H.; Holade, Y.; Bechelany, M.; Tingry, S.; Buchari, B.; Noviandri, I.; Innocent, C.; Cretin, M. Surfactant- and binder-free hierarchical platinum nanoarrays directly grown onto a carbon felt electrode for efficient electrocatalysis. ACS Appl. Mater. Interfaces 2017, 9, 22476–22489.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, D. M.; Chen, H. N.; Xie, H.; Cheng, K.; Li, L.; Xie, K.; Wang, Y. Q. Fe, N, S Co-doped cellulose paper carbon fibers as an air-cathode catalyst for microbial fuel cells. Environ. Res. 2023, 221, 115308.

    Article  CAS  PubMed  Google Scholar 

  30. Xia, X. J.; Liang, Q. D.; Sun, X. G.; Yu, D. H.; Huang, X. R.; Mugo, S. M.; Chen, W.; Wang, D.; Zhang, Q. Intrinsically electron conductive, antibacterial, and anti-swelling hydrogels as implantable sensors for bioelectronics. Adv. Funct. Mater. 2022, 32, 2208024.

    Article  CAS  Google Scholar 

  31. Lai, B. L.; Wei, H. X.; Luo, Z. N.; Zheng, T.; Lin, Y. H.; Liu, Z. Q.; Li, N. ZIF-8-derived Cu,N Co-doped carbon as a bifunctional cathode catalyst for enhanced performance of microbial fuel cell. Sci. Total Environ. 2023, 856, 159083.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Liu, Y. F.; Nie, N.; Tang, H. F.; Zhang, C. R.; Chen, K. Z.; Wang, W.; Liu, J. F. Effective antibacterial activity of degradable copper-doped phosphate-based glass nanozymes. ACS Appl. Mater. Interfaces 2021, 13, 11631–11645.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Joint Funds of NUAA-SEU (No. 6907046031) and the National Natural Science Foundation of China (Nos. 52076043 and 52222609). We thank the Big Data Center of Southeast University for providing the facility support on the numerical calculations in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Song or Yuqiao Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, K., Liu, Z., Jiang, D. et al. Jellyfish bio-inspired Fe@CNT@CuNC derived from ZIF-8 for cathodic oxygen reduction. Nano Res. 17, 2352–2359 (2024). https://doi.org/10.1007/s12274-023-6064-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6064-5

Keywords

Navigation