Skip to main content
Log in

Optimizing 2D-metal contact in layered Tin-selenide via native oxide modulation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The discovery of two-dimensional (2D) semiconductor has opened up new avenues for the development of short-channel field-effect transistors (FETs) with desired electrical performance. Among them, orthorhombic tin-selenide (SnSe) has garnered increasing attention due to its potential applications in a variety of electronic, optoelectronic, and thermoelectric devices. However, the realization of high-performance SnSe FETs with low contact resistance (Rc) remains a challenge. Herein, we systematically investigate the contact of few-layer SnSe FETs through the modulation of native oxide on SnSe by using different metals. It is found that chromium (Cr)-contacted devices possess the best FET performance, such as electron mobility up to 606 cm2/(V·s) at 78 K, current on/off ratio exceeding 1010, and saturation current of ∼ 550 µA/µm, where a negligible Schottky barrier (SB) of ∼ 30 meV and a low contact resistance of ∼ 425 Ω µm are achieved. X-ray photoelectron spectroscopy (XPS) and cross-sectional electron dispersive X-ray spectroscopy (EDX) results further reveal that the improved contact arises from the Cr-induced reduction of native oxide (SnOx) to Sn, which thins the tunneling barrier for efficient electron injection. Our findings provide a deep insight into the 2D-metal contact of SnSe and pave the way for its applications in future nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lojek, B. History of Semiconductor Engineering; Springer: Berlin, 2007.

    Google Scholar 

  2. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    CAS  PubMed  Google Scholar 

  3. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    CAS  PubMed  ADS  Google Scholar 

  4. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    CAS  PubMed  ADS  Google Scholar 

  5. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat Rev Mater. 2017, 2, 17033.

    CAS  ADS  Google Scholar 

  6. Hu, Z. H.; Niu, T. C.; Guo, R.; Zhang, J. L.; Lai, M.; He, J.; Wang, L.; Chen, W. Two-dimensional black phosphorus: Its fabrication, functionalization and applications. Nanoscale 2018, 10, 21575–21603.

    CAS  PubMed  Google Scholar 

  7. Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

    CAS  PubMed  Google Scholar 

  8. Das, S.; Sebastian, A.; Pop, E.; McClellan, C. J.; Franklin, A. D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A. V.; Appenzeller, J. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021, 4, 786–799.

    CAS  Google Scholar 

  9. Zhou, X.; Zhang, Q.; Gan, L.; Li, H. Q.; Xiong, J.; Zhai, T. Y. Booming development of group IV–VI semiconductors: Fresh blood of 2D family. Adv. Sci. 2016, 3, 1600177.

    Google Scholar 

  10. Shi, W. R.; Gao, M. X.; Wei, J. P.; Gao, J. F.; Fan, C. W.; Ashalley, E.; Li, H. D.; Wang, Z. M. Tin selenide (SnSe): Growth, properties, and applications. Adv. Sci. 2018, 5, 1700602.

    Google Scholar 

  11. Lefebvre, I.; Szymanski, M. A.; Olivier-Fourcade, J.; Jumas, J. C. Electronic structure of tin monochalcogenides from SnO to SnTe. Phys. Rev. B 1998, 58, 1896–1906.

    CAS  ADS  Google Scholar 

  12. Baumgardner, W. J.; Choi, J. J.; Lim, Y. F.; Hanrath, T. SnSe nanocrystals: Synthesis, structure, optical properties, and surface chemistry. J. Am. Chem. Soc. 2010, 132, 9519–9521.

    CAS  PubMed  Google Scholar 

  13. Liu, S.; Chen, Y. J.; Yang, S. X.; Jiang, C. B. SnSe field-effect transistors with improved electrical properties. Nano Res. 2022, 15, 1532–1537.

    CAS  ADS  Google Scholar 

  14. Cho, S. H.; Cho, K.; Park, N. W.; Park, S.; Koh, J. H.; Lee, S. K. Multi-layer SnSe nanoflake field-effect transistors with low-resistance Au ohmic contacts. Nanoscale Res. Lett. 2017, 12, 373.

    PubMed  PubMed Central  ADS  Google Scholar 

  15. Wang, H.; Lu, W. H.; Hou, S. H.; Yu, B. X.; Zhou, Z. Y.; Xue, Y. L.; Guo, R.; Wang, S. F.; Zeng, K. Y.; Yan, X. B. A 2D-SnSe film with ferroelectricity and its bio-realistic synapse application. Nanoscale 2020, 12, 21913–21922.

    CAS  PubMed  Google Scholar 

  16. Chun, D.; Walser, R. M.; Bené, R. W.; Courtney, T. H. Polarity-dependent memory switching in devices with SnSe and SnSe2 crystals. Appl. Phys. Lett. 1974, 24, 479–481.

    CAS  ADS  Google Scholar 

  17. Vaughn II, D. D.; In, S. I.; Schaak, R. E. A precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: The case of SnSe. ACS Nano 2011, 5, 8852–8860.

    CAS  PubMed  Google Scholar 

  18. Pejova, B.; Tanuševsk, A. A Study of photophysics, photoelectrical properties, and photoconductivity relaxation dynamics in the case of nanocrystalline Tin(II) selenide thin films. J. Phys. Chem. C 2008, 112, 3525–3537.

    CAS  Google Scholar 

  19. Yang, S. X.; Liu, Y.; Wu, M. H.; Zhao, L. D.; Lin, Z. Y.; Cheng, H. C.; Wang, Y. L.; Jiang, C. B.; Wei, S. H.; Huang, L. et al. Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 2018, 11, 554–564.

    CAS  Google Scholar 

  20. Pei, T. F.; Bao, L. H.; Ma, R. S.; Song, S. R.; Ge, B. H.; Wu, L. M.; Zhou, Z.; Wang, G. C.; Yang, H. F.; Li, J. J. et al. Epitaxy of ultrathin SnSe single crystals on polydimethylsiloxane: In-plane electrical anisotropy and gate-tunable thermopower. Adv. Electron. Mater. 2016, 2, 1600292.

    Google Scholar 

  21. Zhang, C. X.; Ouyang, H.; Miao, R. L.; Sui, Y. Z.; Hao, H.; Tang, Y. X.; You, J.; Zheng, X.; Xu, Z. J.; Cheng, X. A. et al. Anisotropic nonlinear optical properties of a SnSe flake and a novel perspective for the application of all-optical switching. Adv. Opt. Mater. 2019, 7, 1900631.

    Google Scholar 

  22. Zhao, L. D.; Tan, G. J.; Hao, S. Q.; He, J. Q.; Pei, Y. L.; Chi, H.; Wang, H.; Gong, S. K.; Xu, H. B.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2015, 351, 141–144.

    PubMed  ADS  Google Scholar 

  23. Chang, C.; Wu, M. H.; He, D. S.; Pei, Y. L.; Wu, C. F.; Wu, X. F.; Yu, H. L.; Zhu, F. Y.; Wang, K. D.; Chen, Y. et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018, 360, 778–783.

    CAS  PubMed  Google Scholar 

  24. Zhang, Q.; Chere, E. K.; Sun, J. Y.; Cao, F.; Dahal, K.; Chen, S.; Chen, G.; Ren, Z. F. Studies on thermoelectric properties of n-type polycrystalline SnSe1−xSx by iodine doping. Adv. Energy Mater. 2015, 5, 1500360.

    Google Scholar 

  25. Zhao, S. L.; Wang, H.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H. L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288–295.

    CAS  Google Scholar 

  26. Zhang, B.; Peng, K. L.; Sha, X. C.; Li, A.; Zhou, X. Y.; Chen, Y. H.; Deng, Q. S.; Yang, D. F.; Ma, E.; Han, X. D. A second amorphous layer underneath surface oxide. Microsc. Microanal. 2017, 23, 173–178.

    CAS  PubMed  ADS  Google Scholar 

  27. Zhang, B.; Li, A.; Han, G.; Zhang, Z. H.; Peng, K. L.; Gong, X. N.; Zhou, X. Y.; Han, X. D. Dynamic epitaxial crystallization of SnSe2 on the oxidized SnSe surface and its atomistic mechanisms. ACS Appl. Mater. Interfaces, in press, https://doi.org/10.1021/acsami.0c05029.

  28. Zheng, Y.; Gao, J.; Han, C.; Chen, W. Ohmic contact engineering for two-dimensional materials. Cell Rep. Phys. Sci. 2021, 2, 100298.

    CAS  Google Scholar 

  29. Schulman, D. S.; Arnold, A. J.; Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037–3058.

    CAS  PubMed  Google Scholar 

  30. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

    CAS  PubMed  ADS  Google Scholar 

  31. Im, H. S.; Myung, Y.; Cho, Y. J.; Kim, C. H.; Kim, H. S.; Back, S. H.; Jung, C. S.; Jang, D. M.; Lim, Y. R.; Park, J. et al. Facile phase and composition tuned synthesis of tin chalcogenide nanocrystals. RSC Adv. 2013, 3, 10349–10354.

    CAS  ADS  Google Scholar 

  32. Evans, M. W.; Eckardt, H.; Evans, G. J. ECE applied to energy from space-time: Amplification of the radiative correction by spin connection resonance. J. Found. Phys. Chem. 2011, 1, 535–560.

    Google Scholar 

  33. Jung, Y.; Choi, M. S.; Nipane, A.; Borah, A.; Kim, B.; Zangiabadi, A.; Taniguchi, T.; Watanabe, K.; Yoo, W. J.; Hone, J. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2019, 2, 187–194.

    Google Scholar 

  34. Chuang, H. J.; Chamlagain, B.; Koehler, M.; Perera, M. M.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 2016, 16, 1896–1902.

    CAS  PubMed  ADS  Google Scholar 

  35. Zheng, Y.; Xiang, D.; Zhang, J. L.; Guo, R.; Wang, W. H.; Liu, T.; Loh, L.; Wang, Y. N.; Gao, J.; Han, C. et al. Controlling phase transition in WSe2 towards ideal n-type transistor. Nano Res. 2021, 14, 2703–2710.

    CAS  ADS  Google Scholar 

  36. Kwon, G.; Choi, Y. H.; Lee, H.; Kim, H. S.; Jeong, J.; Jeong, K.; Baik, M.; Kwon, H.; Ahn, J.; Lee, E. et al. Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 2022, 5, 241–247.

    CAS  Google Scholar 

  37. Shen, P. C.; Su, C.; Lin, Y. X.; Chou, A. S.; Cheng, C. C.; Park, J. H.; Chiu, M. H.; Lu, A. Y.; Tang, H. L.; Tavakoli, M. M. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021, 593, 211–217.

    CAS  PubMed  ADS  Google Scholar 

  38. Li, W. S.; Gong, X. S.; Yu, Z. H.; Ma, L.; Sun, W. J.; Gao, S.; Köroğlu, Ç.; Wang, W. F.; Liu, L.; Li, T. T. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 2023, 613, 274–279.

    CAS  PubMed  ADS  Google Scholar 

  39. Xie, L.; Liao, M. Z.; Wang, S. P.; Yu, H.; Du, L. J.; Tang, J.; Zhao, J.; Zhang, J.; Chen, P.; Lu, X. B. et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 2017, 29, 1702522.

    Google Scholar 

  40. Shi, X. H.; Li, X. F.; Guo, Q.; Gao, H.; Zeng, M.; Han, Y. B.; Yan, S. W.; Wu, Y. Q. Improved self-heating in short-channel monolayer WS2 transistors with high-thermal conductivity BeO dielectrics. Nano Lett. 2022, 22, 7667–7673.

    CAS  PubMed  ADS  Google Scholar 

  41. Mleczko, M. J.; Yu, A. C.; Smyth, C. M.; Chen, V.; Shin, Y. C.; Chatterjee, S.; Tsai, Y. C.; Nishi, Y.; Wallace, R. M.; Pop, E. Contact engineering high-performance n-type MoTe2 transistors. Nano Lett. 2019, 12, 6352–6362.

    ADS  Google Scholar 

  42. Somvanshi, D.; Ber, E.; Bailey, C. S.; Pop, E.; Yalon, E. Improved current density and contact resistance in bilayer MoSe2 field effect transistors by AlOx capping. ACS Appl. Mater. Interfaces 2020, 12, 36355–36361.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Maskaeva, L. N.; Fedorova, E. A.; Markov, V. F.; Kuznetsov, M. V.; Lipina, O. G. A. Composition, structure, and semiconductor properties of chemically deposited SnSe films. Semiconductors 2019, 53, 853–859.

    CAS  ADS  Google Scholar 

  44. Lin, A. W. C.; Armstrong, N. R.; Kuwana, T. X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides. Anal. Chem. 1977, 49, 1228–1235.

    CAS  Google Scholar 

  45. Li, S.; Wang, Y. M.; Chen, C.; Li, X. F.; Xue, W. H.; Wang, X. Y.; Zhang, Z. W.; Cao, F.; Sui, J. H.; Liu, X. J. et al. Heavy doping by bromine to improve the thermoelectric properties of n-type polycrystalline SnSe. Adv. Sci. 2018, 5, 1800598.

    Google Scholar 

  46. Jang, J.; Kim, Y.; Chee, S. S.; Kim, H.; Whang, D.; Kim, G. H.; Yun, S. J. Clean interface contact using a ZnO interlayer for low-contact-resistance MoS2 transistors. ACS Appl. Mater. Interfaces 2020, 12, 5031–5039.

    CAS  PubMed  Google Scholar 

  47. Palumbo, F.; Wen, C.; Lombardo, S.; Pazos, S.; Aguirre, F.; Eizenberg, M.; Hui, F.; Lanza, M. A review on dielectric breakdown in thin dielectrics: Silicon dioxide, high-k, and layered dielectrics. Adv. Funct. Mater. 2020, 30, 1900657.

    CAS  Google Scholar 

  48. Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

    CAS  PubMed  ADS  Google Scholar 

  49. Minder, R.; Ottaviani, G.; Canali, C. Charge transport in layer semiconductors. J. Phys. Chem. Solids 1976, 37, 417–424.

    CAS  ADS  Google Scholar 

  50. Wu, R. X.; Tao, Q. Y.; Li, J.; Li, W.; Chen, Y.; Lu, Z. Y.; Shu, Z. W.; Zhao, B.; Ma, H. F.; Zhang, Z. W. et al. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 2022, 5, 497–504.

    CAS  Google Scholar 

Download references

Acknowledgements

C. H. and Y. M. S. acknowledge the financial support from the National Natural Science Foundation of China (Nos. 62004128 and 61874074), the Fundamental Research Foundation of Shenzhen (No. JCYJ20190808152607389), and the Science and Technology Project of Shenzhen (No. JCYJ20220531100815034). H. N. L. acknowledges the Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515012055). The authors thank the technical support from the Instrumental Analysis Center and the Photonics Center of Shenzhen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Han.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., You, Q., Yin, Z. et al. Optimizing 2D-metal contact in layered Tin-selenide via native oxide modulation. Nano Res. 17, 3014–3020 (2024). https://doi.org/10.1007/s12274-023-6047-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6047-6

Keywords

Navigation