Skip to main content
Log in

Ru-doped functional porous materials for electrocatalytic water splitting

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrolytic water splitting (EWS) is an attractive and promising technique for the production of hydrogen energy. Nevertheless, the sluggish kinetic rate of hydrogen/oxygen evolution reactions leads to a high overpotential and low energy efficiency. Up to date, Pt/Ir-based nanocatalysts have become the state-of-the-art EWS catalysts, but disadvantages such as high cost and low earth abundance greatly limit their applications in EWS devices. As an attractive candidate for the Pt/Ir catalysts, series of Ru-based nanomaterials have aroused much attention for their low price, Pt-like hydrogen bond strength, and high EWS activity. In particular, Ru-doped functional porous materials have been becoming one of the most representative EWS catalysts, which can not only achieve the dispersion and adjustment for active Ru sites, but also simultaneously solve the problems of mass transfer and catalytic conversion in EWS. In this review, the design and preparation strategies of Ru-doped functional porous materials toward EWS in recent years are summarized, including Ru-doped metal organic frameworks (MOFs), Ru-doped porous organic polymers (POPs), and their derivatives. Meanwhile, detailed structure–activity relationships induced by the tuned geometric/electronic structures of Ru-doped functional porous materials are further depicted in this review. Last but not least, the challenges and perspectives of Ru-doped functional porous materials catalysts are reasonably proposed to provide fresh ideas for the design of Ru-based EWS catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, C. H.; Guo, Z. W.; Tian, Y.; Yu, C. M.; Liu, K. S.; Jiang, L. Engineering electrode wettability to enhance mass transfer in hydrogen evolution reaction. Nano Res. Energy 2023, 2, e9120063.

    Article  Google Scholar 

  4. Zhang, K. X.; Liang, X.; Wang, L. N.; Sun, K.; Wang, Y. N.; Xie, Z. B.; Wu, Q. N.; Bai, X. Y.; Hamdy, M. S.; Chen, H. et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022, 1, e9120032.

    Article  ADS  Google Scholar 

  5. Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.

    Article  CAS  PubMed  Google Scholar 

  6. Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.

    Article  CAS  ADS  Google Scholar 

  7. Zeng, L. Y.; Zhao, Z. L.; Lv, F.; Xia, Z. H.; Lu, S. Y.; Li, J.; Sun, K. A.; Wang, K.; Sun, Y. J.; Huang, Q. Z. et al. Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer. Nat. Commun. 2022, 13, 3822.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Wang, J.; Ji, Y. J.; Yin, R. G.; Li, Y. Y.; Shao, Q.; Huang, X. Q. Transition metal-doped ultrathin RuO2 networked nanowires for efficient overall water splitting across a broad pH range. J. Mater. Chem. A 2019, 7, 6411–6416.

    Article  CAS  Google Scholar 

  9. Zhu, Y. L.; Tahini, H. A.; Hu, Z. W.; Dai, J.; Chen, Y. B.; Sun, H. N.; Zhou, W.; Liu, M. L.; Smith, S. C.; Wang, H. T. et al. Unusual synergistic effect in layered ruddlesden-popper oxide enables ultrafast hydrogen evolution. Nat. Commun. 2019, 10, 149.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  10. Wu, Z. Y.; Chen, F. Y.; Li, B. Y.; Yu, S. W.; Finfrock, Y. Z.; Meira, D. M.; Yan, Q. Q.; Zhu, P.; Chen, M. X.; Song, T. W. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 2022, 22, 100–108.

    Article  PubMed  ADS  Google Scholar 

  11. Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 2021, 33, 2004243.

    Article  CAS  Google Scholar 

  12. Rong, C. L.; Shen, X. J.; Wang, Y.; Thomsen, L.; Zhao, T. W.; Li, Y. B.; Lu, X. Y.; Amal, R.; Zhao, C. Electronic structure engineering of single-atom Ru sites via Co-N4 sites for bifunctional pH-universal water splitting. Adv. Mater. 2022, 34, 2110103.

    Article  CAS  Google Scholar 

  13. Wang, Y.; Pan, Y.; Zhu, L. K.; Yu, H. H.; Duan, B. Y.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER. Carbon 2019, 146, 671–679.

    Article  CAS  Google Scholar 

  14. Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 2022, 18, 2204524.

    Article  CAS  Google Scholar 

  15. Bao, F. X.; Yang, Z. L.; Yuan, Y. L.; Yu, P. L.; Zeng, G. M.; Cheng, Y.; Lu, Y. F.; Zhang, J. W.; Huang, H. W. Synergistic cascade hydrogen evolution boosting via integrating surface oxophilicity modification with carbon layer confinement. Adv. Funct. Mater. 2022, 32, 2108991.

    Article  CAS  Google Scholar 

  16. Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Liu, J. L.; Zheng, Y.; Zhu, D. D.; Vasileff, A.; Ling, T.; Qiao, S. Z. Identification of pH-dependent synergy on Ru/MoS2 interface: A comparison of alkaline and acidic hydrogen evolution. Nanoscale 2017, 9, 16616–16621.

    Article  CAS  PubMed  Google Scholar 

  18. Luo, T. M.; Huang, J. F.; Hu, Y. Z.; Yuan, C. K.; Chen, J. S.; Cao, L. Y.; Kajiyoshi, K.; Liu, Y. J.; Zhao, Y.; Li, Z. J. et al. Fullerene lattice-confined Ru nanoparticles and single atoms synergistically boost electrocatalytic hydrogen evolution reaction. Adv. Funct. Mater. 2023, 33, 2213058.

    Article  CAS  Google Scholar 

  19. Ma, X. F.; Xiao, H.; Gao, Y.; Zhao, M.; Zhang, L.; Zhang, J. M.; Jia, J. F.; Wu, H. S. Enhancement of pore confinement caused by the mosaic structure on Ru nanoparticles for pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2023, 11, 3524–3534.

    Article  CAS  Google Scholar 

  20. Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

    Article  CAS  Google Scholar 

  21. Wang, J.; Wei, Z. Z.; Mao, S. J.; Li, H. R.; Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 2018, 11, 800–806.

    Article  CAS  Google Scholar 

  22. Wu, Y. L.; Li, X. F.; Wei, Y. S.; Fu, Z. M.; Wei, W. B.; Wu, X. T.; Zhu, Q. L.; Xu, Q. Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction. Adv. Mater. 2021, 33, 2006965.

    Article  CAS  Google Scholar 

  23. Yang, W. X.; Zhang, W. Y.; Liu, R.; Lv, F.; Chao, Y. G.; Wang, Z. C.; Guo, S. J. Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis. Chin. J. Catal. 2022, 43, 110–115.

    Article  Google Scholar 

  24. Du, J.; Li, F.; Sun, L. C. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 2663–2695.

    Article  CAS  PubMed  Google Scholar 

  25. Li, C.; Zhang, H.; Liu, M.; Lang, F. F.; Pang, J. D.; Bu, X. H. Recent progress in metal-organic frameworks (MOFs) for electrocatalysis. Ind. Chem. Mater. 2023, 1, 9–38.

    Article  CAS  Google Scholar 

  26. Li, Y.; Karimi, M.; Gong, Y. N.; Dai, N.; Safarifard, V.; Jiang, H. L. Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications. Matter 2021, 4, 2230–2265.

    Article  CAS  Google Scholar 

  27. Wang, X. L.; Dong, L. Z.; Qiao, M.; Tang, Y. J.; Liu, J.; Li, Y. F.; Li, S. L.; Su, J. X.; Lan, Y. Q. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew. Chem., Int. Ed. 2018, 57, 9660–9664.

    Article  CAS  Google Scholar 

  28. Yang, D. H.; Tao, Y.; Ding, X. S.; Han, B. H. Porous organic polymers for electrocatalysis. Chem. Soc. Rev. 2022, 51, 761–791.

    Article  CAS  PubMed  Google Scholar 

  29. Yu, J. H.; Corma, A.; Li, Y. Functional porous materials chemistry. Adv. Mater. 2020, 32, 2006277.

    Article  CAS  Google Scholar 

  30. Bae, S. Y.; Mahmood, J.; Jeon, I. Y.; Baek, J. B. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 2020, 5, 43–56.

    Article  CAS  ADS  Google Scholar 

  31. Han, S. M.; Yun, Q. B.; Tu, S. Y.; Zhu, L. J.; Cao, W. B.; Lu, Q. P. Metallic ruthenium-based nanomaterials for electrocatalytic and photocatalytic hydrogen evolution. J. Mater. Chem. A 2019, 7, 24691–24714.

    Article  CAS  Google Scholar 

  32. Yang, Y. J.; Yu, Y. H.; Li, J.; Chen, Q. R.; Du, Y. L.; Rao, P.; Li, R. S.; Jia, C. M.; Kang, Z. Y.; Deng, P. L. et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13, 160.

    Article  CAS  ADS  Google Scholar 

  33. Yu, J.; He, Q. J.; Yang, G. M.; Zhou, W.; Shao, Z. P.; Ni, M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 2019, 9, 9973–10011.

    Article  CAS  Google Scholar 

  34. Zhu, J. T.; Cai, L. J.; Tu, Y. D.; Zhang, L. F.; Zhang, W. J. Emerging ruthenium single-atom catalysts for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2022, 10, 15370–15389.

    Article  CAS  Google Scholar 

  35. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, e1230444.

    Article  Google Scholar 

  36. Yaghi, O. M.; Li, G. M.; Li, H. L. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378, 703–706.

    Article  CAS  ADS  Google Scholar 

  37. Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

    Article  CAS  PubMed  Google Scholar 

  38. Li, C. F.; Shuai, T. Y.; Zheng, L. R.; Tang, H. B.; Zhao, J. W.; Li, G. R. The key role of carboxylate ligands in Ru@Ni-MOFs/NF in promoting water dissociation kinetics for effective hydrogen evolution in alkaline media. Chem. Eng. J. 2023, 451, 138618.

    Article  CAS  Google Scholar 

  39. Wang, Y.; Wang, C.; Shang, H. Y.; Yuan, M. Y.; Wu, Z. Y.; Li, J.; Du, Y. K. Self-driven Ru-modified NiFe MOF nanosheet as multifunctional electrocatalyst for boosting water and urea electrolysis. J. Colloid Interface Sci. 2022, 605, 779–789.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Ding, Z. Q.; Wang, K.; Mai, Z. Q.; He, G. Q.; Liu, Z.; Tang, Z. H. RhRu alloyed nanoparticles confined within metal organic frameworks for electrochemical hydrogen evolution at all pH values. Int. J. Hydrog. Energy 2019, 44, 24680–24689.

    Article  CAS  Google Scholar 

  41. Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Li, Y. W.; Wu, Y. H.; Li, T. T.; Lu, M. T.; Chen, Y.; Cui, Y. J.; Gao, J. K.; Qian, G. D. Tuning the electronic structure of a metal-organic framework for an efficient oxygen evolution reaction by introducing minor atomically dispersed ruthenium. Carbon Energy 2023, 5, e265.

    Article  CAS  Google Scholar 

  43. Xu, Y.; Yu, S. S.; Ren, T. L.; Liu, S. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Hydrophilic/aerophobic hydrogen-evolving electrode: NiRu-based metal-organic framework nanosheets in situ grown on conductive substrates. ACS Appl. Mater. Interfaces 2020, 12, 34728–34735.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, M.; Li, H. L.; Li, W.; Li, J. Y.; Yi, L. Y.; Hu, W. H.; Li, C. M. Ru-doping enhanced electrocatalysis of metal-organic framework nanosheets toward overall water splitting. Chem.—Eur. J. 2020, 26, 17091–17096.

    Article  CAS  PubMed  Google Scholar 

  45. Lin, Y.; Zhao, L. X.; Wang, L. M.; Gong, Y. Q. Ruthenium-doped NiFe-based metal-organic framework nanoparticles as highly efficient catalysts for the oxygen evolution reaction. Dalton Trans. 2021, 50, 4280–4287.

    Article  CAS  PubMed  Google Scholar 

  46. Liao, P. Q.; Shen, J. Q.; Zhang, J. P. Metal-organic frameworks for electrocatalysis. Coord. Chem. Rev. 2018, 373, 22–48.

    Article  CAS  Google Scholar 

  47. Xu, Y. X.; Li, Q.; Xue, H. G.; Pang, H. Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 2018, 376, 292–318.

    Article  CAS  Google Scholar 

  48. Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

    Article  CAS  ADS  Google Scholar 

  49. Tian, L.; Li, Z.; Xu, X. N.; Zhang, C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J. Mater. Chem. A 2021, 9, 13459–13470.

    Article  CAS  Google Scholar 

  50. Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 2018, 30, 1707189.

    Article  Google Scholar 

  51. Zhao, M.; Chen, Z. T.; Lyu, Z. H.; Hood, Z. D.; Xie, M. H.; Vara, M.; Chi, M. F.; Xia, Y. N. Ru octahedral nanocrystals with a face-centered cubic structure, {111} facets, thermal stability up to 400 °C, and enhanced catalytic activity. J. Am. Chem. Soc. 2019, 141, 7028–7036.

    Article  CAS  PubMed  Google Scholar 

  52. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.

    Article  CAS  PubMed  Google Scholar 

  53. Liu, H. Y.; Chen, L. Y.; Hou, C. C.; Wei, Y. S.; Xu, Q. Soluble porous carbon cage-encapsulated highly active metal nanoparticle catalysts. J. Mater. Chem. A 2021, 9, 13670–13677.

    Article  CAS  Google Scholar 

  54. Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.

    Article  Google Scholar 

  55. Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

    Article  CAS  PubMed  Google Scholar 

  56. Ge, S. M.; Zhang, L. W.; Hou, J. R.; Liu, S.; Qin, Y. J.; Liu, Q.; Cai, X. B.; Sun, Z. Y.; Yang, M. S.; Luo, J. et al. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl. Energy Mater. 2022, 5, 9487–9494.

    Article  CAS  Google Scholar 

  57. Yang, W. X.; Wang, Z. C.; Zhang, W. Y.; Guo, S. J. Electronic-structure tuning of water-splitting nanocatalysts. Trends Chem. 2019, 1, 259–271.

    Article  CAS  Google Scholar 

  58. Zhang, Q.; Lian, K.; Liu, Q.; Qi, G. C.; Zhang, S. S.; Luo, J.; Liu, X. J. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J. Colloid Interface Sci. 2023, 646, 844–854.

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Zhang, Q.; Lian, K.; Qi, G. C.; Zhang, S. S.; Liu, Q.; Luo, Y.; Luo, J.; Liu, X. J. High-entropy alloys in water electrolysis: Recent advances, fundamentals, and challenges. Sci. China Mater. 2023, 66, 1681–1701.

    Article  CAS  Google Scholar 

  60. Li, K.; Li, Y.; Wang, Y. M.; Ge, J. J.; Liu, C. P.; Xing, W. Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium in situ embedded in carbon. Energy Environ. Sci. 2018, 11, 1232–1239.

    Article  CAS  Google Scholar 

  61. Pedersen, A. F.; Ulrikkeholm, E. T.; Escudero-Escribano, M.; Johansson, T. P.; Malacrida, P.; Pedersen, C. M.; Hansen, M. H.; Jensen, K. D.; Rossmeisl, J.; Friebel, D. et al. Probing the nanoscale structure of the catalytically active overlayer on Pt alloys with rare earths. Nano Energy 2016, 29, 249–260.

    Article  CAS  Google Scholar 

  62. Cullen, D. A.; More, K. L.; Atanasoska, L. L.; Atanasoski, R. T. Impact of IrRu oxygen evolution reaction catalysts on Pt nanostructured thin films under start-up/shutdown cycling. J. Power Sources 2014, 269, 671–681.

    Article  CAS  ADS  Google Scholar 

  63. Liu, S. L.; Zhang, Q. H.; Bao, J. C.; Li, Y. F.; Dai, Z. H.; Gu, L. Significantly enhanced hydrogen evolution activity of freestanding Pd-Ru distorted icosahedral clusters with less than 600 atoms. Chem.—Eur. J. 2017, 23, 18203–18207.

    Article  CAS  PubMed  Google Scholar 

  64. Wang, S.; Li, Z. R.; Shen, T.; Wang, D. L. N-doped carbon shells encapsulated Ru-Ni nanoalloys for efficient hydrogen evolution reaction. ChemSusChem 2023, 16, e202202128.

    Article  CAS  PubMed  Google Scholar 

  65. Yu, J.; Dai, Y. W.; Wu, X. H.; Zhang, Z. B.; He, Q. J.; Cheng, C.; Wu, Z.; Shao, Z. P.; Ni, M. Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts. Chem. Eng. J. 2021, 417, 128105.

    Article  CAS  Google Scholar 

  66. Zhang, C. H.; Sha, J. W.; Fei, H. L.; Liu, M. J.; Yazdi, S.; Zhang, J. B.; Zhong, Q. F.; Zou, X. L.; Zhao, N. Q.; Yu, H. S. et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 2017, 11, 6930–6941.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. T. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009.

    Article  CAS  Google Scholar 

  68. Zhou, L.; Lu, S. Y.; Guo, S. J. Recent progress on precious metal single atom materials for water splitting catalysis. SusMat 2021, 1, 194–210.

    Article  CAS  Google Scholar 

  69. Zhu, J. T.; Tu, Y. D.; Cai, L. J.; Ma, H. B.; Chai, Y.; Zhang, L. F.; Zhang, W. J. Defect-assisted anchoring of Pt single atoms on MoS2 nanosheets produces high-performance catalyst for industrial hydrogen evolution reaction. Small 2022, 18, 2104824.

    Article  CAS  Google Scholar 

  70. Liu, T.; Li, P.; Yao, N.; Cheng, G. Z.; Chen, S. L.; Luo, W.; Yin, Y. D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 4679–4684.

    Article  CAS  Google Scholar 

  71. Qiu, T. J.; Liang, Z. B.; Guo, W. H.; Gao, S.; Qu, C.; Tabassum, H.; Zhang, H.; Zhu, B. J.; Zou, R. Q.; Shao-Horn, Y. Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting. Nano Energy 2019, 58, 1–10.

    Article  CAS  Google Scholar 

  72. Hong, C. B.; Li, X. F.; Wei, W. B.; Wu, X. T.; Zhu, Q. L. Nano-engineering of Ru-based hierarchical porous nanoreactors for highly efficient pH-universal overall water splitting. Appl. Catal. B: Environ. 2021, 294, 120230.

    Article  CAS  Google Scholar 

  73. Yang, K.; Xu, P. P.; Lin, Z. Y.; Yang, Y.; Jiang, P.; Wang, C. L.; Liu, S.; Gong, S. P.; Hu, L.; Chen, Q. W. Ultrasmall Ru/Cu-doped RuO2 complex embedded in amorphous carbon skeleton as highly active bifunctional electrocatalysts for overall water splitting. Small 2018, 14, 1803009.

    Article  Google Scholar 

  74. Fan, Z. H.; Jiang, J.; Ai, L. H.; Shao, Z. P.; Liu, S. M. Rational design of ruthenium and cobalt-based composites with rich metal-insulator interfaces for efficient and stable overall water splitting in acidic electrolyte. ACS Appl. Mater. Interfaces 2019, 11, 47894–47903.

    Article  CAS  PubMed  Google Scholar 

  75. Xu, C.; Yang, X. D.; Wen, X.; Wang, Y. Y.; Sun, Y. Q.; Xu, B.; Li, C. C. Nitrogen-doped carbon encapsulating a RuCo heterostructure for enhanced electrocatalytic overall water splitting. CrystEngComm 2022, 24, 4208–4214.

    Article  CAS  Google Scholar 

  76. Su, J. W.; Yang, Y.; Xia, G. L.; Chen, J. T.; Jiang, P.; Chen, Q. W. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  77. Cheng, G. J.; Wu, G. Y.; Li, H.; Liu, S. C.; Liu, Y. Bimetallic oxygen electrocatalyst derived from metallocenes doped MOFs. Nanotechnology 2021, 32, 225603.

    Article  CAS  ADS  Google Scholar 

  78. Sarkar, B.; Das, D.; Nanda, K. K. Construction of noble-metal alloys of cobalt confined N-doped carbon polyhedra toward efficient water splitting. Green Chem. 2020, 22, 7884–7895.

    Article  CAS  Google Scholar 

  79. Li, G. N.; Zheng, K. T.; Li, W. S.; He, Y. C.; Xu, C. J. Ultralow Ru-induced bimetal electrocatalysts with a Ru-enriched and mixed-valence surface anchored on a hollow carbon matrix for oxygen reduction and water splitting. ACS Appl. Mater. Interfaces 2020, 12, 51437–51447.

    Article  CAS  PubMed  Google Scholar 

  80. Xu, Y.; Yin, S. L.; Li, C. J.; Deng, K.; Xue, H. R.; Li, X. N.; Wang, H. J.; Wang, L. Low-ruthenium-content NiRu nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 1376–1381.

    Article  CAS  Google Scholar 

  81. Wu, W.; Wu, Y.; Zheng, D.; Wang, K.; Tang, Z. H. Ni@Ru core-shell nanoparticles on flower-like carbon nanosheets for hydrogen evolution reaction at all-pH values, oxygen evolution reaction and overall water splitting in alkaline solution. Electrochim. Acta 2019, 320, 134568.

    Article  CAS  Google Scholar 

  82. Zhang, Z.; Li, P.; Wang, Q.; Feng, Q.; Tao, Y. K.; Xu, J. Y.; Jiang, C.; Lu, X. E.; Fan, J. T.; Gu, M. et al. Mo modulation effect on the hydrogen binding energy of hexagonal-close-packed Ru for hydrogen evolution. J. Mater. Chem. A 2019, 7, 2780–2786.

    Article  CAS  Google Scholar 

  83. Yang, M. Y.; Jiao, L.; Dong, H. L.; Zhou, L. J.; Teng, C. Q.; Yan, D. M.; Ye, T. N.; Chen, X. X.; Liu, Y.; Jiang, H. L. Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media. Sci. Bull. 2021, 66, 257–264.

    Article  CAS  Google Scholar 

  84. Chen, J. S.; Huang, J. F.; Wang, R.; Feng, W. H.; Wang, H.; Luo, T. M.; Hu, Y. Z.; Yuan, C. K.; Feng, L. L.; Cao, L. Y. et al. Atomic ruthenium coordinated with chlorine and nitrogen as efficient and multifunctional electrocatalyst for overall water splitting and rechargeable zinc-air battery. Chem. Eng. J. 2022, 441, 136078.

    Article  CAS  Google Scholar 

  85. Yan, B. L.; Liu, D. P.; Feng, X. L.; Shao, M. Z.; Zhang, Y. Ru species supported on MOF-derived N-doped TiO2/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution reaction catalysts. Adv. Funct. Mater. 2020, 30, 2003007.

    Article  CAS  Google Scholar 

  86. Li, D.; Shi, X. L.; Sun, S. C.; Zheng, X. Y.; Tian, D.; Jiang, D. L. Metal-organic framework-derived three-dimensional macropore nitrogen-doped carbon frameworks decorated with ultrafine Ru-based nanoparticles for overall water splitting. Inorg. Chem. 2022, 61, 9685–9692.

    Article  CAS  PubMed  Google Scholar 

  87. Qiu, L. S.; Zheng, G. K.; He, Y.; Lei, L. C.; Zhang, X. W. Ultrasmall Sn-RuO2 nanoparticles supported on N-doped carbon polyhedra for highly active and durable oxygen evolution reaction in acidic media. Chem. Eng. J. 2021, 409, 128155.

    Article  CAS  Google Scholar 

  88. Jiang, P.; Yang, Y.; Shi, R. H.; Xia, G. L.; Chen, J. T.; Su, J. W.; Chen, Q. W. Pt-like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 5475–5485.

    Article  CAS  Google Scholar 

  89. Rezaee, S.; Shahrokhian, S. Ruthenium/ruthenium oxide hybrid nanoparticles anchored on hollow spherical copper-cobalt nitride/nitrogen doped carbon nanostructures to promote alkaline water splitting: Boosting catalytic performance via synergy between morphology engineering, electron transfer tuning and electronic behavior modulation. J. Colloid Interface Sci. 2022, 626, 1070–1084.

    Article  CAS  PubMed  ADS  Google Scholar 

  90. Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

    Article  CAS  PubMed  Google Scholar 

  91. Bai, X.; Wang, L. M.; Nan, B.; Tang, T. M.; Niu, X. D.; Guan, J. Q. Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Res. 2022, 15, 6019–6025.

    Article  CAS  ADS  Google Scholar 

  92. Tang, T. M.; Duan, Z. Y.; Baimanov, D.; Bai, X.; Liu, X. Y.; Wang, L. M.; Wang, Z. L.; Guan, J. Q. Synergy between isolated Fe and Co sites accelerates oxygen evolution. Nano Res. 2023, 16, 2218–2223.

    Article  CAS  ADS  Google Scholar 

  93. Zhu, S. Y.; Ge, J. J.; Liu, C. P.; Xing, W. Atomic-level dispersed catalysts for PEMFCs: Progress and future prospects. EnergyChem 2019, 1, 100018.

    Article  Google Scholar 

  94. Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.

    Article  CAS  Google Scholar 

  95. Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 4448–4463.

    Article  CAS  Google Scholar 

  96. Su, J. W.; Ge, R. X.; Jiang, K. M.; Dong, Y.; Hao, F.; Tian, Z. Q.; Chen, G. X.; Chen, L. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2018, 30, 1801351.

    Article  Google Scholar 

  97. Zhang, H.; Wu, B.; Su, J. W.; Zhao, K. Y.; Chen, L. MOF-derived zinc-doped ruthenium oxide hollow nanorods as highly active and stable electrocatalysts for oxygen evolution in acidic media. ChemNanoMat 2021, 7, 117–121.

    Article  CAS  Google Scholar 

  98. Lin, Y. C.; Tian, Z. Q.; Zhang, L. J.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  99. Wang, C.; Shang, H. Y.; Li, J.; Wang, Y.; Xu, H.; Wang, C. Y.; Guo, J.; Du, Y. Y. Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis. Chem. Eng. J. 2021, 420, 129805.

    Article  CAS  Google Scholar 

  100. Wang, C.; Qi, L. M. Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 17219–17224.

    Article  CAS  Google Scholar 

  101. Lin, Y.; Zhang, M. L.; Zhao, L. X.; Wang, L. M.; Cao, D. L.; Gong, Y. Q. Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting. Appl. Surf. Sci. 2021, 536, 147952.

    Article  CAS  Google Scholar 

  102. Shen, Q. H.; Du, C. C.; Chen, Q. Q.; Tang, J.; Wang, B.; Zhang, X. H.; Chen, J. H. In-situ formed Cu-doped RuS2 hollow polyhedrons integrated with simultaneously heterostructure engineering with metallic Ru for boosting hydrogen evolution in alkaline media. Mater. Today Phys. 2022, 23, 100625.

    Article  CAS  Google Scholar 

  103. Liu, Y.; Xu, S. J.; Zheng, X. Y.; Lu, Y. K.; Li, D.; Jiang, D. L. Ru-doping modulated cobalt phosphide nanoarrays as efficient electrocatalyst for hydrogen evolution rection. J. Colloid Interface Sci. 2022, 625, 457–465.

    Article  CAS  PubMed  ADS  Google Scholar 

  104. Chen, H. H.; Zhang, S. S.; Liu, Q.; Yu, P.; Luo, J.; Hu, G. Z.; Liu, X. J. CoSe2 nanocrystals embedded into carbon framework as efficient bifunctional catalyst for alkaline seawater splitting. Inorg. Chem. Commun. 2022, 146, 110170.

    Article  CAS  Google Scholar 

  105. Qiu, B. C.; Zhang, Y. F.; Guo, X. Y.; Ma, Y. X.; Du, M. M.; Fan, J.; Zhu, Y.; Zeng, Z. Y.; Chai, Y. Nitrogen-induced interfacial electronic structure of NiS2/CoS2 with optimized water and hydrogen binding abilities for efficient alkaline hydrogen evolution electrocatalysis. J. Mater. Chem. A 2022, 10, 719–725.

    Article  CAS  Google Scholar 

  106. Wang, P.; Luo, Y. Z.; Zhang, G. X.; Chen, Z. S.; Ranganathan, H.; Sun, S. H.; Shi, Z. C. Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 2022, 14, 120.

    Article  ADS  Google Scholar 

  107. Zhou, J.; Dou, Y. B.; Wu, X. Q.; Zhou, A.; Shu, L.; Li, J. R. Alkalietched Ni(II)-based metal-organic framework nanosheet arrays for electrocatalytic overall water splitting. Small 2020, 16, 1906564.

    Article  CAS  Google Scholar 

  108. Liu, D. M.; Wang, C.; Zhou, Z. M.; Ye, C. Q.; Yu, R.; Wang, C. Q.; Du, Y. K. Ultra-low Ru doped MOF-derived hollow nanorods for efficient oxygen evolution reaction. Inorg. Chem. Front. 2022, 9, 6158–6166.

    Article  CAS  Google Scholar 

  109. Liu, D. M.; Xu, H.; Wang, C.; Ye, C. Q.; Yu, R.; Du, Y. K. In situ etch engineering of Ru doped NiFe(OH)x/NiFe-MOF nanocomposites for boosting the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 24670–24676.

    Article  CAS  ADS  Google Scholar 

  110. Hu, Y. D.; Luo, G.; Wang, L. G.; Liu, X. K.; Qu, Y. T.; Zhou, Y. S.; Zhou, F. Y.; Li, Z. J.; Li, Y. F.; Yao, T. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 2021, 11, 2002816.

    Article  CAS  Google Scholar 

  111. Luo, R.; Li, Z. Y.; Li, R. X.; Jiang, C. L.; Qi, R. J.; Liu, M. Q.; Lin, H. C.; Huang, R.; Luo, C. H.; Peng, H. Ultrafine Ru nanoparticles derived from few-layered Ti3C2Tx MXene templated MOF for highly efficient alkaline hydrogen evolution. Int. J. Hydrog. Energy 2022, 47, 32787–32795.

    Article  CAS  Google Scholar 

  112. Li, J. Z.; Hou, C. Z.; Chen, C.; Ma, W. S.; Li, Q.; Hu, L. W.; Lv, X. W.; Dang, J. Collaborative interface optimization strategy guided ultrafine RuCo and MXene heterostructure electrocatalysts for efficient overall water splitting. ACS Nano 2023, 17, 10947–10957.

    Article  CAS  PubMed  Google Scholar 

  113. Deeloed, W.; Priamushko, T.; Čížek, J.; Suramitr, S.; Kleitz, F. Defect-engineered hydroxylated mesoporous spinel oxides as bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2022, 14, 23307–23321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zou, Z. H.; Cai, M. M.; Zhao, X. H.; Huang, J. F.; Du, J.; Xu, C. L. Defective metal-organic framework derivative by room-temperature exfoliation and reduction for highly efficient oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 14011–14018.

    Article  CAS  Google Scholar 

  115. Wu, X. K.; Xu, W. X.; Wang, Z. C.; Li, H. D.; Wang, M. H.; Zhang, D.; Lai, J. P.; Wang, L. Rapid microwave synthesis of Ru-supported partially carbonized conductive metal-organic framework for efficient hydrogen evolution. Chem. Eng. J. 2022, 431, 133247.

    Article  CAS  Google Scholar 

  116. Bai, X.; Duan, Z. Y.; Nan, B.; Wang, L. M.; Tang, T. M.; Guan, J. Q. Unveiling the active sites of ultrathin Co-Fe layered double hydroxides for the oxygen evolution reaction. Chin. J. Catal. 2022, 43, 2240–2248.

    Article  CAS  Google Scholar 

  117. Kong, X.; Gao, Q. L.; Bu, S. Y.; Xu, Z. A.; Shen, D.; Liu, B.; Lee, C. S.; Zhang, W. J. Plasma-assisted synthesis of nickel-cobalt nitride-oxide hybrids for high-efficiency electrochemical hydrogen evolution. Mater. Today Energy 2021, 21, 100784.

    Article  CAS  Google Scholar 

  118. Bai, X.; Guan, J. Q. MXenes for electrocatalysis applications: Modification and hybridization. Chin. J. Catal. 2022, 43, 2057–2090.

    Article  CAS  Google Scholar 

  119. Das, S.; Heasman, P.; Ben, T.; Qiu, S. L. Porous organic materials: Strategic design and structure-function correlation. Chem. Rev. 2017, 117, 1515–1563.

    Article  CAS  PubMed  Google Scholar 

  120. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

    Article  CAS  PubMed  Google Scholar 

  121. Liu, M. Y.; Guo, L. P.; Jin, S. B.; Tan, B. E. Covalent triazine frameworks: Synthesis and applications. J. Mater. Chem. A 2019, 7, 5153–5172.

    Article  CAS  Google Scholar 

  122. Tan, L. X.; Tan, B. E. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem. Soc. Rev. 2017, 46, 3322–3356.

    Article  CAS  PubMed  Google Scholar 

  123. Cooper, A. I. Conjugated microporous polymers. Adv. Mater. 2009, 21, 1291–1295.

    Article  CAS  Google Scholar 

  124. Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials. Chem. Commun. 2004, 230–231.

  125. Yang, C. H.; Yang, Z. D.; Dong, H.; Sun, N.; Lu, Y.; Zhang, F. M.; Zhang, G. L. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER. ACS Energy Lett. 2019, 4, 2251–2258.

    Article  CAS  Google Scholar 

  126. Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, S. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 2016, 28, 4375–4379.

    Article  CAS  Google Scholar 

  127. Chandran, R. K.; Illathvalappil, R. R.; Wakchaure, V. C.; Goudappagouda; Kurungot, S.; Babu, S. S. Metalloporphyrin two-dimensional polymers via metal-catalyst-free C–C bond formation for efficient catalytic hydrogen evolution. ACS Appl. Energy Mater. 2018, 1, 6442–6450.

    Article  Google Scholar 

  128. Fang, H. B.; Chen, J. X.; Balogun, M. S.; Tong, Y. X.; Zhang, J. Y. Covalently modified electrode with Pt nanoparticles encapsulated in porous organic polymer for efficient electrocatalysis. ACS Appl. Nano Mater. 2018, 1, 6477–6482.

    Article  CAS  Google Scholar 

  129. Jia, H. X.; Sun, Z. J.; Jiang, D. C.; Du, P. W. Covalent cobalt porphyrin framework on multiwalled carbon nanotubes for efficient water oxidation at low overpotential. Chem. Mater. 2015, 27, 4586–4593.

    Article  CAS  Google Scholar 

  130. Boro, B.; Adak, M. K.; Biswas, S.; Sarkar, C.; Nailwal, Y.; Shrotri, A.; Chakraborty, B.; Wong, B. M.; Mondal, J. Electrocatalytic water oxidation performance in an extended porous organic framework with a covalent alliance of distinct Ru sites. Nanoscale 2022, 14, 7621–7633.

    Article  CAS  PubMed  Google Scholar 

  131. Pan, R. P.; Wu, J. L.; Wang, W. W.; Cheng, C.; Liu, X. K. Robust crystalline aromatic imide-linked two-dimensional covalent organic frameworks confining ruthenium nanoparticles as efficient hydrogen evolution electrocatalyst. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 621, 126511.

    Article  CAS  Google Scholar 

  132. Maiti, S.; Chowdhury, A. R.; Das, A. K. Electrochemically facile hydrogen evolution using ruthenium encapsulated two dimensional covalent organic framework (2D COF). ChemNanoMat 2019, 6, 99–106.

    Article  Google Scholar 

  133. Zhao, Q.; Chen, S. H.; Ren, H. W.; Chen, C.; Yang, W. Ruthenium nanoparticles confined in covalent organic framework/reduced graphene oxide as electrocatalyst toward hydrogen evolution reaction in alkaline media. Ind. Eng. Chem. Res. 2021, 60, 11070–11078.

    Article  CAS  Google Scholar 

  134. Zhao, Y. X.; Liang, Y.; Wu, D. X.; Tian, H.; Xia, T.; Wang, W. X.; Xie, W. Y.; Hu, X. M.; Tian, X. L.; Chen, Q. Ruthenium complex of sp2 carbon-conjugated covalent organic frameworks as an efficient electrocatalyst for hydrogen evolution. Small 2022, 18, 2107750.

    Article  CAS  Google Scholar 

  135. Gao, X.; Gao, Y. J.; Li, S. Q.; Yang, J.; Zhuang, G. L.; Deng, S. W.; Yao, Z. H.; Zhong, X.; Wei, Z. Z.; Wang, J. G. Defect CTF derived Ru-based catalysts for high performance overall water splitting reaction. J. Energy Chem. 2020, 50, 135–142.

    Article  Google Scholar 

  136. Xu, C. L.; Wang, H.; Wang, Q.; Wang, Y.; Zhang, Y.; Fan, G. Y. Ruthenium coordinated with triphenylphosphine-hyper-crosslinked polymer: An efficient catalyst for hydrogen evolution reaction and hydrolysis of ammonia borane. Appl. Surf. Sci. 2019, 466, 193–201.

    Article  CAS  ADS  Google Scholar 

  137. Ma, R. P.; Wang, X.; Yang, X. L.; Li, Y.; Liu, C. P.; Ge, J. J.; Xing, W. Identification of active sites and synergistic effect in multicomponent carbon-based Ru catalysts during electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 166–173.

    Article  CAS  ADS  Google Scholar 

  138. Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 2014, 5, 2789–2793.

    Article  CAS  Google Scholar 

  139. Zhang, J.; Wang, L. B.; Li, N.; Liu, J. F.; Zhang, W.; Zhang, Z. B.; Zhou, N. C.; Zhu, X. L. A novel azobenzene covalent organic framework. CrystEngComm 2014, 16, 6547–6551.

    Article  CAS  Google Scholar 

  140. Zhao, X. J.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M. Y.; Schlesiger, C.; Praetz, S.; Schmidt, J.; Thomas, A. Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 2019, 141, 6623–6630.

    Article  CAS  PubMed  Google Scholar 

  141. Bhunia, S.; Das, S. K.; Jana, R.; Peter, S. C.; Bhattacharya, S.; Addicoat, M.; Bhaumik, A.; Pradhan, A. Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework. ACS Appl. Mater. Interfaces 2017, 9, 23843–23851.

    Article  CAS  PubMed  Google Scholar 

  142. Tang, T. M.; Li, S. S.; Sun, J. R.; Wang, Z. L.; Guan, J. Q. Advances and challenges in two-dimensional materials for oxygen evolution. Nano Res. 2022, 15, 8714–8750.

    Article  CAS  ADS  Google Scholar 

  143. Ji, J.; Zhang, C. J.; Qin, S. B.; Jin, P. First-principles investigation of two-dimensional covalent-organic framework electrocatalysts for oxygen evolution/reduction and hydrogen evolution reactions. Sustainable Energy Fuels 2021, 5, 5615–5626.

    Article  CAS  Google Scholar 

  144. Zhou, Y. N.; Chen, L. L.; Sheng, L.; Luo, Q. Q.; Zhang, W. H.; Yang, J. L. Dual-metal atoms embedded into two-dimensional covalent organic framework as efficient electrocatalysts for oxygen evolution reaction: A DFT study. Nano Res. 2022, 15, 7994–8000.

    Article  CAS  ADS  Google Scholar 

  145. Zhuang, X. D.; Zhao, W. X.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng, X. L. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem. 2016, 7, 4176–4181.

    Article  CAS  Google Scholar 

  146. Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem., Int. Ed. 2008, 47, 3450–3453.

    Article  CAS  Google Scholar 

  147. Jiao, L.; Hu, Y. L.; Ju, H. X.; Wang, C. D.; Gao, M. R.; Yang, Q.; Zhu, J. F.; Yu, S. H.; Jiang, H. L. From covalent triazine-based frameworks to N-doped porous carbon/reduced graphene oxide nanosheets: Efficient electrocatalysts for oxygen reduction. J. Mater. Chem. A 2017, 5, 23170–23178.

    Article  CAS  Google Scholar 

  148. Davankov, V. A.; Rogoshin, S. V.; Tsyurupa, M. P. Macronet isoporous gels through crosslinking of dissolved polystyrene. J. Polym. Sci., Polym. Symp. 1974, 47, 95–101.

    Article  CAS  Google Scholar 

  149. Tsyurupa, M. P.; Davankov, V. A. Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review. React. Funct. Polym. 2006, 66, 768–779.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFB1506300), the National Natural Science Foundation of China (Nos. 21971017, 21922502, and 22075018), Young Elite Scientists Sponsorship Program by BAST (No. BYESS2023163), CNPC Innovation Found (No. 2022DQ02-0606), and Beijing Institute of Technology Research Fund Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxiu Yang or Bo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Liu, R., Zhang, Y. et al. Ru-doped functional porous materials for electrocatalytic water splitting. Nano Res. 17, 982–1002 (2024). https://doi.org/10.1007/s12274-023-6003-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6003-5

Keywords

Navigation