Skip to main content
Log in

Antimony oxides-protected ultrathin Ir-Sb nanowires as bifunctional hydrogen electrocatalysts

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing electrocatalysts with fast kinetics and long-term stability for alkaline hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is of considerable importance for the industrial production of green and sustainable energy. Here, an ultrathin Ir-Sb nanowires (Ir-Sb NWs) protected by antimony oxides (SbOx) was synthesized as an efficient bifunctional catalyst for both HOR and HER under alkaline media. Except from the much higher mass activities of Ir-Sb nanowires than those of Ir nanowires (Ir NWs) and commercial Pt/C, the SbOx protective layer also contributes to the maintenance of morphology and anti-CO poisoning ability, leading to the long-term cycling performance in the presence of CO. Specifically, the Ir-Sb NW/SbOx exhibits the highest catalytic activities, which are about 3.5 and 4.8 times to those of Ir NW/C and commercial Pt/C toward HOR, respectively. This work provides that the ultrathin morphology and H2O-occupied Sb sites can exert the intrinsic high activity of Ir and effectively optimize the absorption of OH⋆ both in alkaline HER/HOR electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  PubMed  Google Scholar 

  3. Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

    Article  ADS  Google Scholar 

  4. Zhang, H. B.; Zuo, S. W.; Qiu, M.; Wang, S. B.; Zhang, Y. F.; Zhang, J.; Lou, X. W. Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eabb9823.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang, W. H.; Su, C. Y.; Zhu, C.; Bo, T. T.; Zuo, S. W.; Zhou, W.; Ren, Y. F.; Zhang, Y. N.; Zhang, J.; Rueping, M. et al. Isolated electron trap-induced charge accumulation for efficient photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2023, 62, e202304634.

    Article  CAS  Google Scholar 

  6. Lin, Y.; Cui, X. J.; Zhao, Y. L.; Liu, Z. C.; Zhang, G. X.; Pan, Y. Heterojunction interface editing in Co/NiCoP nanospheres by oxygen atoms decoration for synergistic accelerating hydrogen and oxygen evolution electrocatalysis. Nano Res. 2023, 16, 8765–8772.

    Article  ADS  CAS  Google Scholar 

  7. Wang, Y. J.; Wilkinson, D. P.; Zhang, J. J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 2011, 111, 7625–7651.

    Article  CAS  PubMed  Google Scholar 

  8. Kua, J.; Goddard, W. A. Oxidation of methanol on 2nd and 3rd row group VIII transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells. J. Am. Chem. Soc. 1999, 121, 10928–10941.

    Article  CAS  Google Scholar 

  9. Juarez, F.; Salmazo, D.; Quaino, P.; Schmickler, W. Hydrogen oxidation in alkaline media: The bifunctional mechanism for water formation. Electrocatalysis 2019, 10, 584–590.

    Article  CAS  Google Scholar 

  10. Wu, X.; Zhang, H. B.; Zuo, S. W.; Dong, J. C.; Li, Y.; Zhang, J.; Han, Y. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 2021, 13, 136.

    Article  ADS  CAS  Google Scholar 

  11. Montero, M. A.; de Chialvo, M. R. G.; Chialvo, A. C. Kinetics of the hydrogen oxidation reaction on nanostructured rhodium electrodes in alkaline solution. J. Power Sources 2015, 283, 181–186.

    Article  ADS  CAS  Google Scholar 

  12. Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568–7579.

    Article  CAS  Google Scholar 

  14. Wang, M. M.; Sun, K. A.; Mi, W. L.; Feng, C.; Guan, Z. K.; Liu, Y. Q.; Pan, Y. Interfacial water activation by single-atom Co-N3 sites coupled with encapsulated Co nanocrystals for accelerating electrocatalytic hydrogen evolution. ACS Catal. 2022, 12, 10771–10780.

    Article  Google Scholar 

  15. Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.

    Article  CAS  Google Scholar 

  16. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.

    Article  CAS  Google Scholar 

  17. Fan, Z. X.; Luo, Z. M.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y. L.; Zhang, H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 1414–1419.

    Article  CAS  PubMed  Google Scholar 

  18. Li, M. T.; Zheng, X. Q.; Li, L.; Wei, Z. D. Research progress of hydrogen oxidation and hydrogen evolution reaction mechanism in alkaline media. Acta Phys. Chim. Sin. 2021, 37, 2007054.

    Google Scholar 

  19. Wang, M. M.; Zheng, X. H.; Qin, D. L.; Li, M.; Sun, K. A.; Liu, C. H.; Cheong, W. C.; Liu, Z.; Chen, Y. J.; Liu, S. J. et al. Atomically dispersed CoN3C1-TeN1C3 diatomic sites anchored in N-doped carbon as efficient bifunctional catalyst for synergistic electrocatalytic hydrogen evolution and oxygen reduction. Small 2022, 18, 2201974.

    Article  CAS  Google Scholar 

  20. Li, M.; Zhu, H. Y.; Yuan, Q.; Li, T. Y.; Wang, M. M.; Zhang, P.; Zhao, Y. L.; Qin, D. L.; Guo, W. Y.; Liu, B. et al. Proximity electronic effect of Ni/Co diatomic sites for synergistic promotion of electrocatalytic oxygen reduction and hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2210867.

    Article  CAS  Google Scholar 

  21. Durst, J.; Siebel, A.; Simon, C.; Hasche, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

    Article  CAS  Google Scholar 

  22. Sheng, W. C.; Myint, M.; Chen, J. G.; Yan, Y. S. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 2013, 6, 1509–1512.

    Article  CAS  Google Scholar 

  23. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

    Article  Google Scholar 

  24. Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

    Article  PubMed  Google Scholar 

  25. Sheng, M. Q.; Jiang, B. B.; Wu, B.; Liao, F.; Fan, X.; Lin, H. P.; Li, Y. Y.; Lifshitz, Y.; Lee, S. T.; Shao, M. W. Approaching the volcano top: Iridium/silicon nanocomposites as efficient electrocatalysts for the hydrogen evolution reaction. ACS Nano 2019, 13, 2786–2794.

    Article  CAS  PubMed  Google Scholar 

  26. Sheng, W. C.; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 6, 5848.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Liu, D.; Lu, S. Q.; Xue, Y. R.; Guan, Z.; Fang, J. J.; Zhu, W.; Zhuang, Z. B. One-pot synthesis of IrNi@Ir core-shell nanoparticles as highly active hydrogen oxidation reaction electrocatalyst in alkaline electrolyte. Nano Energy 2019, 59, 26–32.

    Article  CAS  Google Scholar 

  28. Ramaswamy, N.; Ghoshal, S.; Bates, M. K.; Jia, Q. Y.; Li, J. K.; Mukerjee, S. Hydrogen oxidation reaction in alkaline media: Relationship between electrocatalysis and electrochemical double-layer structure. Nano Energy 2017, 41, 765–771.

    Article  CAS  Google Scholar 

  29. Peng, L. S.; Zheng, X. Q.; Li, L.; Zhang, L.; Yang, N.; Xiong, K.; Chen, H. M.; Li, J.; Wei, Z. D. Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 245, 122–129.

    Article  CAS  Google Scholar 

  30. Liu, L.; Liu, Y. Y.; Liu, C. G. Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt(111) through ab initio simulation of electrode/electrolyte kinetics. J. Am. Chem. Soc. 2020, 142, 4985–4989.

    Article  CAS  PubMed  Google Scholar 

  31. Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed. 2012, 51, 12495–12498.

    Article  CAS  Google Scholar 

  32. Fu, L. H.; Li, Y. B.; Yao, N.; Yang, F. L.; Cheng, G. Z.; Luo, W. IrMo nanocatalysts for efficient alkaline hydrogen electrocatalysis. ACS Catal. 2020, 10, 7322–7327.

    Article  CAS  Google Scholar 

  33. Fu, L. H.; Yang, F. L.; Hu, Y. C.; Li, Y. B.; Chen, S. L.; Luo, W. Discrepant roles of adsorbed OH⋆ species on IrWOx for boosting alkaline hydrogen electrocatalysis. Sci. Bull. 2020, 65, 1735–1742.

    Article  CAS  Google Scholar 

  34. Ohyama, J.; Kumada, D.; Satsuma, A. Improved hydrogen oxidation reaction under alkaline conditions by ruthenium-iridium alloyed nanoparticles. J. Mater. Chem. A 2016, 4, 15980–15985.

    Article  CAS  Google Scholar 

  35. Cong, Y. Y.; McCrum, I. T.; Gao, X. Q.; Lv, Y.; Miao, S.; Shao, Z. G.; Yi, B. L.; Yu, H. M.; Janik, M. J.; Song, Y. J. Uniform Pd0.33Ir0.67 nanoparticles supported on nitrogen-doped carbon with remarkable activity toward the alkaline hydrogen oxidation reaction. J. Mater. Chem. A 2019, 7, 3161–3169.

    Article  CAS  Google Scholar 

  36. Ishikawa, K.; Ohyama, J.; Okubo, K.; Murata, K.; Satsuma, A. Enhancement of alkaline hydrogen oxidation reaction of Ru-Ir alloy nanoparticles through bifunctional mechanism on Ru-Ir pair site. ACS Appl. Mater. Interfaces 2020, 12, 22771–22777.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, S. M.; Liu, K.; Liu, Z. J.; Liu, M. X.; Zhang, Z. X.; Qiao, Z.; Ming, L.; Gao, C. B. Highly strained Au-Ag-Pd alloy nanowires for boosted electrooxidation of biomass-derived alcohols. Nano Lett. 2021, 21, 1074–1082.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Feng, H. L.; Calder, S.; Ghimire, M. P.; Yuan, Y. H.; Shirako, Y.; Tsujimoto, Y.; Matsushita, Y.; Hu, Z. W.; Kuo, C. Y.; Tjeng, L. H. et al. Ba2NiOsO6: A dirac-mott insulator with ferromagnetism near 100 K. Phys. Rev. B 2016, 94, 235158.

    Article  ADS  Google Scholar 

  39. Agrestini, S.; Chen, K.; Kuo, C. Y.; Zhao, L.; Lin, H. J.; Chen, C. T.; Rogalev, A.; Ohresser, P.; Chan, T. S.; Weng, S. C. et al. Nature of the magnetism of iridium in the double perovskite Sr2CoIrO6. Phys. Rev. B 2019, 100, 014443.

    Article  ADS  CAS  Google Scholar 

  40. Zhang, B. H.; Zhao, G. Q.; Zhang, B. X.; Xia, L. X.; Jiang, Y. Z.; Ma, T. Y.; Gao, M. X.; Sun, W. P.; Pan, H. G. Lattice-confined Ir clusters on Pd nanosheets with charge redistribution for the hydrogen oxidation reaction under alkaline conditions. Adv. Mater. 2021, 33, 2105400.

    Article  CAS  Google Scholar 

  41. Li, L. L.; Sun, H. N.; Hu, Z. W.; Zhou, J.; Huang, Y. C.; Huang, H. L.; Song, S. Z.; Pao, C. W.; Chang, Y. C.; Komarek, A. C. et al. In situ/operando capturing unusual Ir6+ facilitating ultrafast electrocatalytic water oxidation. Adv. Funct. Mater. 2021, 31, 2104746.

    Article  CAS  Google Scholar 

  42. Dupin, J. C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324.

    Article  CAS  Google Scholar 

  43. Reiche, R.; Dobler, D.; Holgado, J. P.; Barranco, A.; Martín-Concepción, A. I.; Yubero, F.; Espinós, J. P.; González-Elipe, A. R. The auger parameter and the study of chemical and electronic interactions at the Sb2Ox/SnO2 and Sb2Ox/Al2O3 interfaces. Surf. Sci. 2003, 537, 228–240.

    Article  ADS  CAS  Google Scholar 

  44. Kim, D. H.; Kwon, D. W.; Hong, S. C. Structural characteristics of V-based catalyst with Sb on selective catalytic NOx reduction with NH3. Appl. Surf. Sci. 2021, 538, 148088.

    Article  CAS  Google Scholar 

  45. Zheng, J.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Correlating hydrogen oxidation/evolution reaction activity with the minority weak hydrogen-binding sites on Ir/C catalysts. ACS Catal. 2015, 5, 4449–4455.

    Article  CAS  Google Scholar 

  46. Wang, M. M.; Wang, M. J.; Zhan, C. H.; Geng, H. B.; Li, Y. H.; Huang, X. Q.; Bu, L. Z. Ultrafine platinum-iridium distorted nanowires as robust catalysts toward bifunctional hydrogen catalysis. J. Mater. Chem. A 2022, 10, 18972–18977.

    Article  CAS  Google Scholar 

  47. Zhang, Y.; Li, G.; Zhao, Z. L.; Han, L. L.; Feng, Y. G.; Liu, S. H.; Xu, B. Y.; Liao, H. G.; Lu, G.; Xin, H. L. et al. Atomically isolated Rh sites within highly branched Rh2Sb nanostructures enhance bifunctional hydrogen electrocatalysis. Adv. Mater. 2021, 33, 2105049.

    Article  CAS  Google Scholar 

  48. Zhuang, Z. B.; Giles, S. A.; Zheng, J.; Jenness, G. R.; Caratzoulas, S.; Vlachos, D. G.; Yan, Y. S. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 2016, 7, 10141.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao, G. Q.; Jiang, Y. Z.; Dou, S. X.; Sun, W. P.; Pan, H. G. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci. Bull. 2021, 66, 85–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports by the National Key R&D Program of China (No. 2020YFB1505802), Ministry of Science and Technology of China (No. 2017YFA0208200), the National Natural Science Foundation of China (Nos. 22025108, U21A20327, 22121001 and 22275152), and start-up support from Xiamen University. We thank beamline TLS01C1 (“National Synchrotron Radiation Research Center”) for providing the beam time. We acknowledge support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zhang or Xiaoqing Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Huang, X., Liu, S. et al. Antimony oxides-protected ultrathin Ir-Sb nanowires as bifunctional hydrogen electrocatalysts. Nano Res. 17, 1042–1049 (2024). https://doi.org/10.1007/s12274-023-5996-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5996-0

Keywords

Navigation