Skip to main content
Log in

Challenges and prospects for room temperature solid-state sodium-sulfur batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Room temperature sodium-sulfur (Na-S) batteries, known for their high energy density and low cost, are one of the most promising next-generation energy storage systems. However, the polysulfide shuttling and uncontrollable Na dendrite growth as well as safety issues caused by the use of organic liquid electrolytes in Na-S cells, have severely hindered their commercialization. Solid-state electrolytes instead of liquid electrolytes are considered to be the most direct and effective solution to solve the above problems. However, its practical application is still greatly challenged due to the poor interfacial compatibility between the all-solid-state electrolytes and the anode/cathode, ionic conductivity, and the shuttle effect caused by the presence of liquid phase in the quasi-solid-state electrolytes. This paper presents a comprehensive review of solid-state Na-S batteries from the perspective of regulating interfacial compatibility and improving ionic conductivity as well as suppressing polysulfide shuttle. According to different components, solid-state electrolytes were divided into five categories: solid inorganic electrolytes, solid polymer electrolytes, polymer/inorganic solid hybrid electrolytes, gel polymer electrolytes, and liquid–solid inorganic hybrid electrolytes. Finally, the prospect of developing high performance solid-state electrolytes to improve the cycling stability of room temperature Na-S cells is envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, J. K.; Wang, M. L.; Zhang, H.; Shang, Z. T.; Fu, L.; Zhang, W. L.; Song, B.; Lu, K. Toward the advanced next-generation solid-state Na-S batteries: Progress and prospects. Adv. Funct. Mater. 2023, 33, 2214430.

    Article  CAS  Google Scholar 

  2. Xian, C. X.; Wang, Q. Y.; Xia, Y.; Cao, F.; Shen, S. H.; Zhang, Y. Q.; Chen, M. H.; Zhong, Y.; Zhang, J.; He, X. P. et al. Solid-state electrolytes in lithium-sulfur batteries: Latest progresses and prospects. Small 2023, 19, 2208164.

    Article  CAS  Google Scholar 

  3. Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

    Article  CAS  Google Scholar 

  4. Peng, J.; Zhang, W.; Hu, Z.; Zhao, L. F.; Wu, C.; Peleckis, G.; Gu, Q. F.; Wang, J. Z.; Liu, H. K.; Dou, S. X. et al. Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and long-calendar-life sodium ion batteries. Nano Lett. 2022, 22, 1302–1310.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Ren, Y. X.; Hortance, N.; McBride, J. R.; Hatzell, K. B. Sodium-sulfur batteries enabled by a protected inorganic/organic hybrid solid electrolyte. ACS Energy Lett. 2021, 6, 345–353.

    Article  CAS  Google Scholar 

  6. Wang, Y. Z.; Zhou, D.; Palomares, V.; Shanmukaraj, D.; Sun, B.; Tang, X.; Wang, C. S.; Armand, M.; Rojo, T.; Wang, G. X. Revitalising sodium-sulfur batteries for non-high-temperature operation: A crucial review. Energy Environ. Sci. 2020, 13, 3848–3879.

    Article  CAS  Google Scholar 

  7. Liu, H. W.; Lai, W. H.; Yang, Q. R.; Lei, Y. J.; Wu, C.; Wang, N. N.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Understanding sulfur redox mechanisms in different electrolytes for room-temperature Na-S batteries. Nano-Micro Lett. 2021, 13, 121.

    Article  CAS  ADS  Google Scholar 

  8. Wang, L. L.; Ye, Y. S.; Chen, N.; Huang, Y. X.; Li, L.; Wu, F.; Chen, R. J. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1800919.

    Article  Google Scholar 

  9. Wu, J. R.; Wang, X. S.; Liu, Q.; Wang, S. W.; Zhou, D.; Kang, F. Y.; Shanmukaraj, D.; Armand, M.; Rojo, T.; Li, B. H. et al. A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nat. Commun. 2021, 12, 5746.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Xu, X. Y.; Li, Y. Y.; Cheng, J.; Hou, G. M.; Nie, X. K.; Ai, Q.; Dai, L. N.; Feng, J. K.; Ci, L. J. Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal. J. Energy Chem. 2020, 41, 73–78.

    Article  Google Scholar 

  11. Chi, X. W.; Zhang, Y.; Hao, F.; Kmiec, S.; Dong, H.; Xu, R.; Zhao, K. J.; Ai, Q.; Terlier, T.; Wang, L. et al. An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries. Nat. Commun. 2022, 13, 2854.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Ge, Z.; Li, J.; Liu, J. High sodium ion mobility of PEO-NaTFSI-Na3Zr2Si2PO12 composite solid electrolyte for all-solid-state Na-S battery. ChemistrySelect 2022, 7, e202200620.

    Article  CAS  Google Scholar 

  13. Hegde, G. S.; Sundara, R. A flexible, ceramic-rich solid electrolyte for room-temperature sodium-sulfur batteries. Chem. Commun. 2022, 58, 8794–8797.

    Article  CAS  Google Scholar 

  14. Lou, S. F.; Zhang, F.; Fu, C. K.; Chen, M.; Ma, Y. L.; Yin, G. P.; Wang, J. J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond. Adv. Mater. 2021, 33, 2000721.

    Article  CAS  Google Scholar 

  15. Qian, J.; Jin, B. Y.; Li, Y. Y.; Zhan, X. L.; Hou, Y.; Zhang, Q. H. Research progress on gel polymer electrolytes for lithium-sulfur batteries. J. Energy Chem. 2021, 56, 420–437.

    Article  CAS  Google Scholar 

  16. Yue, J.; Han, F. D.; Fan, X. L.; Zhu, X. Y.; Ma, Z. H.; Yang, J.; Wang, C. S. High-performance all-inorganic solid-state sodium-sulfur battery. ACS Nano 2017, 11, 4885–4891.

    Article  CAS  PubMed  Google Scholar 

  17. Song, S. F.; Duong, H. M.; Korsunsky, A. M.; Hu, N.; Lu, L. A Na+ superionic conductor for room-temperature sodium batteries. Sci. Rep. 2016, 6, 32330.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Yu, X. W.; Grundish, N. S.; Goodenough, J. B.; Manthiram, A. Ionic liquid (IL) laden metal-organic framework (IL-MOF) electrolyte for quasi-solid-state sodium batteries. ACS Appl. Mater. Interfaces 2021, 13, 24662–24669.

    Article  CAS  PubMed  Google Scholar 

  19. Jhang, L. J.; Wang, D. W.; Silver, A.; Li, X. L.; Reed, D.; Wang, D. H. Stable all-solid-state sodium-sulfur batteries for low-temperature operation enabled by sodium alloy anode and confined sulfur cathode. Nano Energy 2023, 105, 107995.

    Article  CAS  Google Scholar 

  20. Feng, X. Y.; Fang, H.; Liu, P. C.; Wu, N.; Self, E. C.; Yin, L.; Wang, P. B.; Li, X.; Jena, P.; Nanda, J. et al. Heavily tungsten-doped sodium thioantimonate solid-state electrolytes with exceptionally low activation energy for ionic diffusion. Angew. Chem., Int. Ed. 2021, 133, 26362–26370.

    Article  ADS  Google Scholar 

  21. Zhou, D.; Chen, Y.; Li, B. H.; Fan, H. B.; Cheng, F. L.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. A stable quasi-solid-state sodium-sulfur battery. Angew. Chem. 2018, 130, 10325–10329.

    Article  ADS  Google Scholar 

  22. Oh, J. A. S.; He, L. C.; Chua, B.; Zeng, K. Y.; Lu, L. Inorganic sodium solid-state electrolyte and interface with sodium metal for room-temperature metal solid-state batteries. Energy Storage Mater. 2021, 34, 28–44.

    Article  Google Scholar 

  23. Wang, Y.; Huang, X. L.; Liu, H. W.; Qiu, W. L.; Feng, C.; Li, C.; Zhang, S. H.; Liu, H. K.; Dou, S. X.; Wang, Z. M. Nanostructure engineering strategies of cathode materials for room-temperature Na-S batteries. ACS Nano 2022, 16, 5103–5130.

    Article  CAS  PubMed  Google Scholar 

  24. Yao, Y. F. Y.; Kummer, J. T. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J. Inorg. Nucl. Chem. 1967, 29, 2453–2475.

    Article  CAS  Google Scholar 

  25. Goodenough, J. B.; Hong, H. Y. P.; Kafalas, J. A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 1976, 11, 203–220.

    Article  CAS  ADS  Google Scholar 

  26. Zhou, W. D.; Li, Y. T.; Xin, S.; Goodenough, J. B. Rechargeable sodium all-solid-state battery. ACS Cent. Sci. 2017, 3, 52–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, C. L.; Liu, L. L.; Qi, X. G.; Lu, Y. X.; Wu, F. X.; Zhao, J. M.; Yu, Y.; Hu, Y. S.; Chen, L. Q. Solid-state sodium batteries. Adv. Energy Mater. 2018, 8, 1703012.

    Article  Google Scholar 

  28. Chi, C.; Katsui, H.; Goto, T. Effect of Li addition on the formation of Na-β/β′-alumina film by laser chemical vapor deposition. Ceram. Int. 2017, 43, 1278–1283.

    Article  CAS  Google Scholar 

  29. Wan, H. L.; Weng, W.; Han, F. D.; Cai, L. T.; Wang, C. S.; Yao, X. Y. Bio-inspired nanoscaled electronic/ionic conduction networks for room-temperature all-solid-state sodium-sulfur battery. Nano Today 2020, 33, 100860.

    Article  CAS  Google Scholar 

  30. Kandagal, V. S.; Bharadwaj, M. D.; Waghmare, U. V. Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12. J. Mater. Chem. A 2015, 3, 12992–12999.

    Article  CAS  Google Scholar 

  31. Wen, Z. Y.; Gu, Z. H.; Xu, X. H.; Cao, J. D.; Zhang, F. L.; Lin, Z. X. Research activities in Shanghai Institute of Ceramics, Chinese Academy of Sciences on the solid electrolytes for sodium sulfur batteries. J. Power Sources 2008, 184, 641–645.

    Article  CAS  ADS  Google Scholar 

  32. Hiraoka, K.; Kato, M.; Kobayashi, T.; Seki, S. Polyether/Na3Zr2Si2PO12 composite solid electrolytes for all-solid-state sodium batteries. J. Phys. Chem. C 2020, 124, 21948–21956.

    Article  CAS  Google Scholar 

  33. Hou, W. R.; Guo, X. W.; Shen, X. Y.; Amine, K.; Yu, H. J.; Lu, J. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective. Nano Energy 2018, 52, 279–291.

    Article  CAS  Google Scholar 

  34. Lu, K.; Li, B. M.; Zhan, X. W.; Xia, F.; Dahunsi, O. J.; Gao, S. Y.; Reed, D. M.; Sprenkle, V. L.; Li, G. S.; Cheng, Y. W. Elastic NaxMoS2-carbon-BASE triple interface direct robust solid–solid interface for all-solid-state Na-S batteries. Nano Lett. 2020, 20, 6837–6844.

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Hong, H. Y. P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 1976, 11, 173–182.

    Article  CAS  Google Scholar 

  36. Lu, L.; Lu, Y.; Alonso, J. A.; López, C. A.; Fernández-Díaz, M. T.; Zou, B. S.; Sun, C. W. A monolithic solid-state sodium-sulfur battery with Al-doped Na3.4Zr2(Si0.8P0.2O4)3 electrolyte. ACS Appl. Mater. Interfaces 2021, 13, 42927–42934.

    Article  CAS  PubMed  Google Scholar 

  37. Yu, X. W.; Manthiram, A. Sodium-sulfur batteries with a polymer-coated NASICON-type sodium-ion solid electrolyte. Matter 2019, 7, 439–451.

    Article  Google Scholar 

  38. Li, M.; Sun, C.; Ni, Q.; Sun, Z.; Liu, Y.; Li, Y.; Li, L.; Jin, H. B.; Zhao, Y. J. High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode. Adv. Energy Mater. 2023, 73, 2203971.

    Article  Google Scholar 

  39. Tang, H. M.; Deng, Z.; Lin, Z. N.; Wang, Z. B.; Chu, I. H.; Chen, C.; Zhu, Z. Y.; Zheng, C.; Ong, S. P. Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations. Chem. Mater. 2018, 30, 163–173.

    Article  CAS  Google Scholar 

  40. Samiee, M.; Radhakrishnan, B.; Rice, Z.; Deng, Z.; Meng, Y. S.; Ong, S. P.; Luo, J. Divalent-doped Na3Zr2Si2PO12 natrium superionic conductor: Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases. J. Power Sources 2017, 347, 229–237.

    Article  CAS  ADS  Google Scholar 

  41. Li, R.; Jiang, D. C.; Du, P.; Yuan, C. B.; Cui, X. Y.; Tang, Q. C.; Zheng, J.; Li, Y. C.; Lu, K.; Ren, X. D. et al. Negating Na∥Na3Zr2Si2PO12 interfacial resistance for dendrite-free and “Na-less” solid-state batteries. Chem. Sci. 2022, 13, 14132–14140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Okura, T.; Nojima, Y.; Kawada, K.; Kojima, Y.; Yamashita, K. Photoluminescence properties of rare-earth ion-doped Na5YSi4O12-based glass ceramics. Ceram. Int. 2021, 47, 1940–1948.

    Article  CAS  Google Scholar 

  43. Shannon, R. D.; Taylor, B. E.; Gier, T. E.; Chen, H. Y.; Berzins, T. Ionic conductivity in sodium yttrium silicon oxide (Na5YSi4O12)-type silicates. Inorg. Chem. 1978, 17, 958–964.

    Article  CAS  Google Scholar 

  44. Kusnezoff, M.; Wagner, D.; Schilm, J.; Heubner, C.; Matthey, B.; Lee, C. W. Influence of microstructure and crystalline phases on impedance spectra of sodium conducting glass ceramics produced from glass powder. J. Solid State Electrochem. 2022, 26, 375–388.

    Article  CAS  Google Scholar 

  45. Okura, T.; Matsuoka, N.; Takahashi, Y.; Yoshida, N.; Yamashita, K. Chemically driven ion exchanging synthesis of Na5YSi4O12-based glass-ceramic proton conductors. Materials 2023, 16, 2155.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Sun, G.; Yang, X.; Chen, N.; Yao, S. Y.; Wang, X. Q.; Jin, X.; Chen, G.; Xie, Y.; Du, F. Na5YSi4O12: A sodium superionic conductor for ultrastable quasi-solid-state sodium-ion batteries. Energy Storage Mater. 2021, 47, 196–202.

    Article  Google Scholar 

  47. Yang, A. K.; Ye, R. J.; Song, H. M.; Lu, Q. Q.; Wang, X. C.; Dashjav, E.; Yao, K.; Grüner, D.; Ma, Q. L.; Tietz, F. et al. Pressureless all-solid-state Na/S batteries with self-supporting Na5YSi4O12 soadfolds. Carbon Energy, in press, https://doi.org/10.1002/cey2.371.

  48. Moon, C. K.; Lee, H. J.; Park, K. H.; Kwak, H.; Heo, J. W.; Choi, K.; Yang, H.; Kim, M. S.; Hong, S. T.; Lee, J. H. et al. Vacancy-driven Na+ superionic conduction in new Ca-doped Na3PS4 for all-solid-state Na-ion batteries. ACS Energy Lett. 2018, 3, 2504–2512.

    Article  CAS  Google Scholar 

  49. Zhang, Z.; Ramos, E.; Lalère, F.; Assoud, A.; Kaup, K.; Hartman, P.; Nazar, L. F. Na11Sn2PS12: A new solid state sodium superionic conductor. Energy Environ. Sci. 2018, 11, 87–93.

    Article  CAS  Google Scholar 

  50. Lee, J. E.; Park, K. H.; Kim, J. C.; Wi, T. U.; Ha, A. R.; Song, Y. B.; Oh, D. Y.; Woo, J.; Kweon, S. H.; Yeom, S. J. et al. Universal solution synthesis of sulfide solid electrolytes using alkahest for all-solid-state batteries. Adv. Mater. 2022, 34, 2200083.

    Article  CAS  Google Scholar 

  51. Jansen, M.; Henseler, U. Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate. J. Solid State Chem. 1992, 99, 110–119.

    Article  CAS  ADS  Google Scholar 

  52. Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 2012, 3, 856.

    Article  PubMed  ADS  Google Scholar 

  53. Nagata, H.; Chikusa, Y. An all-solid-state sodium-sulfur battery operating at room temperature using a high-sulfur-content positive composite electrode. Chem. Lett. 2014, 43, 1333–1334.

    Article  CAS  Google Scholar 

  54. Tanibata, N.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. All-solidstate Na/S batteries with a Na3PS4 electrolyte operating at room temperature. Chem. Mater. 2017, 29, 5232–5238.

    Article  CAS  Google Scholar 

  55. Tanibata, N.; Tsukasaki, H.; Deguchi, M.; Mori, S.; Hayashi, A.; Tatsumisago, M. Characterization of sulfur nanocomposite electrodes containing phosphorus sulfide for high-capacity all-solidstate Na/S batteries. Solid State Ion. 2017, 311, 6–13.

    Article  CAS  Google Scholar 

  56. Che, H. Y.; Chen, S. L.; Xie, Y. Y.; Wang, H.; Amine, K.; Liao, X. Z.; Ma, Z. F. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1075–1101.

    Article  CAS  Google Scholar 

  57. Fan, X. L.; Yue, J.; Han, F. D.; Chen, J.; Deng, T.; Zhou, X. Q.; Hou, S.; Wang, C. S. High-performance all-solid-state Na-S battery enabled by casting–annealing technology. ACS Nano 2018, 12, 3360–3368.

    Article  CAS  PubMed  Google Scholar 

  58. Wan, H. L.; Cai, L. T.; Yao, Y.; Weng, W.; Feng, Y. Z.; Mwizerwa, J. P.; Liu, G. Z.; Yu, Y.; Yao, X. Y. Self-formed electronic/ionic conductive Fe3S4@S@0.9Na3SbS4-0.1NaI composite for high-performance room-temperature all-solid-state sodium-sulfur battery. Small 2020, 16, 2001574.

    Article  CAS  Google Scholar 

  59. Ando, T.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. All-solid-state sodium-sulfur battery showing full capacity with activated carbon MSP20-sulfur-Na3SbS4 composite. Electrochem. Commun. 2020, 116, 106741.

    Article  CAS  Google Scholar 

  60. Zhang, Z. Q.; Wang, Z. F.; Zhang, L.; Liu, D.; Yu, C.; Yan, X. L.; Xie, J.; Huang, J. Y. Unraveling the conversion evolution on solidstate Na-SeS2 battery via in situ TEM. Adv. Sci. 2022, 9, 2200744.

    Article  CAS  Google Scholar 

  61. Zhang, B. K.; Weng, M. Y.; Lin, Z.; Feng, Y. C.; Yang, L. Y.; Wang, L. W.; Pan, F. Li-ion cooperative migration and oxy-sulfide synergistic effect in Li14P2Ge2S16−6xOx solid-state-elecrtrolyte enables extraordinary conductivity and high stability. Small 2020, 16, 1906374.

    Article  CAS  Google Scholar 

  62. Wu, J.; Ye, T.; Wang, Y. C.; Yang, P. Y.; Wang, Q. C.; Kuang, W. Y.; Chen, X. L.; Duan, G. H.; Yu, L. M.; Jin, Z. Q. et al. Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li-S batteries. ACS Nano 2022, 16, 15734–15759.

    Article  CAS  PubMed  Google Scholar 

  63. Li, L.; Xu, R. N.; Zhang, L.; Zhang, Z. Q.; Yang, M.; Liu, D.; Yan, X. L.; Zhou, A. J. O-tailored microstructure-engineered interface toward advanced room temperature all-solid-state Na batteries. Adv. Funct. Mater. 2022, 32, 2203095.

    Article  CAS  Google Scholar 

  64. Miao, X. G.; Di, H. X.; Ge, X. L.; Zhao, D. Y.; Wang, P.; Wang, R. T.; Wang, C. X.; Yin, L. W. AlF3-modified anode–electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte. Energy Storage Mater. 2020, 30, 170–178.

    Article  Google Scholar 

  65. Tang, B.; Jaschin, P. W.; Li, X.; Bo, S. H.; Zhou, Z. Critical interface between inorganic solid-state electrolyte and sodium metal. Mater. Today 2020, 41, 200–218.

    Article  CAS  Google Scholar 

  66. Cao, K. S.; Zhao, X. T.; Chen, J.; Xu, B. B.; Shahzad, M. W.; Sun, W. P.; Pan, H. G.; Yan, M.; Jiang, Y. Z. Hybrid design of bulk-Na metal anode to minimize cycle-induced interface deterioration of solid Na metal battery. Adv. Energy Mater. 2022, 12, 2102579.

    Article  CAS  Google Scholar 

  67. Wang, C. W.; Fu, K.; Kammampata, S. P.; McOwen, D. W.; Samson, A. J.; Zhang, L.; Hitz, G. T.; Nolan, A. M.; Wachsman, E. D.; Mo, Y. F. et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem. Rev. 2020, 120, 4257–4300.

    Article  CAS  PubMed  Google Scholar 

  68. Kim, D. W.; Zettsu, N.; Shiiba, H.; Sánchez-Santolino, G.; Ishikawa, R.; Ikuhara, Y.; Teshima, K. Metastable oxysulfide surface formation on LiNi0.5Mn1.5O4 single crystal particles by carbothermal reaction with sulfur-doped heterocarbon nanoparticles: New insight into their structural and electrochemical characteristics, and their potential applications. J. Mater. Chem. A 2020, 8, 22302–22314.

    Article  CAS  Google Scholar 

  69. Banerjee, S.; Zhang, X. W.; Wang, L. W. Motif-based design of an oxysulfide class of lithium superionic conductors: Toward improved stability and record-high Li-ion conductivity. Chem. Mater. 2019, 31, 7265–7276.

    Article  CAS  Google Scholar 

  70. Zhao, B. S.; Wang, L.; Chen, P.; Liu, S.; Li, G. R.; Xu, N.; Wu, M. T.; Gao, X. P. Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 34477–34485.

    Article  CAS  PubMed  Google Scholar 

  71. Yen, Y. J.; Chung, S. H. Lithium-sulfur cells with a sulfide solid electrolyte/polysulfide cathode interface. J. Mater. Chem. A 2023, 11, 4519–4526.

    Article  CAS  Google Scholar 

  72. Su, S. M.; Ma, J. B.; Zhao, L.; Lin, K.; Li, Q. D.; Lv, S. S.; Kang, F. Y.; He, Y. B. Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy 2021, 3, 866–894.

    Article  CAS  Google Scholar 

  73. Shi, C. M.; Alexander, G. V.; O’Neill, J.; Duncan, K.; Godbey, G.; Wachsman, E. D. All-solid-state garnet type sulfurized polyacrylonitrile/lithium-metal battery enabled by an inorganic lithium conductive salt and a bilayer electrolyte architecture. ACS Energy Lett. 2023, 8, 1803–1810.

    Article  CAS  Google Scholar 

  74. Liu, H. W.; Lai, W. H.; Lei, Y. J.; Yang, H. L.; Wang, N. N.; Chou, S. L.; Liu, H. K.; Dou, S. X.; Wang, Y. X. Electrolytes/interphases: Enabling distinguishable sulfur redox processes in room-temperature sodium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2103304.

    Article  CAS  Google Scholar 

  75. Wang, X. E.; Zhang, C.; Sawczyk, M.; Sun, J.; Yuan, Q. H.; Chen, F. F.; Mendes, T. C.; Howlett, P. C.; Fu, C. K.; Wang, Y. Q.; Tan, X. et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 2022, 21, 1057–1065.

    Article  CAS  PubMed  ADS  Google Scholar 

  76. Liang, X.; Wang, L. L.; Wang, Y.; Liu, Y. C.; Sun, Y.; Xiang, H. F. Constructing multi-functional composite separator of PVDF-HFP/h-BN supported Co-CNF membrane for lithium-sulfur batteries. Sustainable Energy Fuels 2022, 6, 440–448.

    Article  CAS  Google Scholar 

  77. Ge, Z.; Li, J.; Liu, J. Enhanced electrochemical performance of all-solid-state sodium-sulfur batteries by PEO-NaCF3SO3-MIL-53(Al) solid electrolyte. Ionics 2020, 26, 1787–1795.

    Article  CAS  Google Scholar 

  78. Sheng, J. Z.; Zhang, Q.; Sun, C. B.; Wang, J. X.; Zhong, X. W.; Chen, B.; Li, C.; Gao, R. H.; Han, Z. Y.; Zhou, G. M. Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2203272.

    Article  CAS  Google Scholar 

  79. Zhu, T. C.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Wang, C. X.; Xia, Y. Y. An all-solid-state sodium-sulfur battery using a sulfur/carbonized polyacrylonitrile composite cathode. ACS Appl. Energy Mater. 2019, 2, 5263–5271.

    Article  CAS  Google Scholar 

  80. Zhu, Q. C.; Ye, C.; Mao, D. Y. Solid-state electrolytes for lithium-sulfur batteries: Challenges, progress, and strategies. Nanomaterials 2022, 12, 3612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, S. L.; Zhang, W. F.; Zheng, J. F.; Lv, M. Y.; Song, H. Y.; Du, L. Inhibition of polysulfide shuttles in Li-S batteries: Modified separators and solid-state electrolytes. Adv. Energy Mater. 2020, 11, 2000779.

    Article  Google Scholar 

  82. Murugan, S.; Klostermann, S. V.; Schützendübe, P.; Richter, G.; Kästner, J.; Buchmeiser, M. R. Stable cycling of room-temperature sodium-sulfur batteries based on an in situ crosslinked gel polymer electrolyte. Adv. Funct. Mater. 2022, 32, 2201191.

    Article  CAS  Google Scholar 

  83. Freitag, K. M.; Walke, P.; Nilges, T.; Kirchhain, H.; Spranger, R. J.; van Wüllen, L. Electrospun-sodiumtetrafluoroborate-polyethylene oxide membranes for solvent-free sodium ion transport in solid state sodium ion batteries. J. Power Sources 2018, 378, 610–617.

    Article  CAS  ADS  Google Scholar 

  84. Park, C. W.; Ryu, H. S.; Kim, K. W.; Ahn, J. H.; Lee, J. Y.; Ahn, H. J. Discharge properties of all-solid sodium-sulfur battery using poly(ethylene oxide) electrolyte. J. Power Sources 2007, 165, 450–454.

    Article  CAS  ADS  Google Scholar 

  85. Bhide, A.; Hariharan, K. Composite polymer electrolyte based on (PEO)6: NaPO3 dispersed with BaTiO3. Polym. Int. 2008, 57, 523–529.

    Article  CAS  Google Scholar 

  86. Park, S. S.; Tulchinsky, Y.; Dincă, M. Single-ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu-azolate metal-organic framework. J. Am. Chem. Soc. 2017, 139, 13260–13263.

    Article  CAS  PubMed  Google Scholar 

  87. Xi, G.; Xiao, M.; Wang, S. J.; Han, D. M.; Li, Y. N.; Meng, Y. Z. Polymer-based solid electrolytes: Material selection, design, and application. Adv. Funct. Mater. 2020, 31, 2007598.

    Article  Google Scholar 

  88. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  CAS  Google Scholar 

  89. Matios, E.; Wang, H.; Luo, J. M.; Zhang, Y. W.; Wang, C. L.; Lu, X.; Hu, X. F.; Xu, Y.; Li, W. Y. Reactivity-guided formulation of composite solid polymer electrolytes for superior sodium metal batteries. J. Mater. Chem. A 2021, 9, 18632–18643.

    Article  CAS  Google Scholar 

  90. Tao, X. Y.; Liu, Y. Y.; Liu, W.; Zhou, G. M.; Zhao, J.; Lin, D. C.; Zu, C. X.; Sheng, O. W.; Zhang, W. K.; Lee, H. W. et al. Solidstate lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 2017, 17, 2967–2972.

    Article  CAS  PubMed  ADS  Google Scholar 

  91. Liu, M.; Zhang, S. N.; van Eck, E. R. H.; Wang, C.; Ganapathy, S.; Wagemaker, M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 2022, 17, 959–967.

    Article  CAS  PubMed  ADS  Google Scholar 

  92. Li, Y.; Arnold, W.; Halacoglu, S.; Jasinski, J. B.; Druffel, T.; Wang, H. Phase-transition interlayer enables high-performance solid-state sodium batteries with sulfide solid electrolyte. Adv. Funct. Mater. 2021, 31, 2101636.

    Article  CAS  Google Scholar 

  93. Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

    Article  CAS  ADS  Google Scholar 

  94. Wang, C. H.; Kim, J. T.; Wang, C. S.; Sun, X. L. Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells. Adv. Mater. 2023, 35, 2209074.

    Article  CAS  Google Scholar 

  95. Mittal, N.; Tien, S.; Lizundia, E.; Niederberger, M. Hierarchical nanocellulose-based gel polymer electrolytes for stable Na electrodeposition in sodium ion batteries. Small 2022, 18, 2107183.

    Article  CAS  Google Scholar 

  96. Gabryelczyk, A.; Swiderska-Mocek, A.; Czarnecka-Komorowska, D. Muscovite as an inert filler for highly conductive and durable gel polymer electrolyte in sodium-ion batteries. J. Power Sources 2022, 552, 232259.

    Article  CAS  Google Scholar 

  97. Park, C. W.; Ahn, J. H.; Ryu, H. S.; Kim, K. W.; Ahn, H. J. Room-temperature solid-state sodium/sulfur battery. Electrochem. Solid-State Lett. 2006, 9, A123.

    Article  CAS  Google Scholar 

  98. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456–458.

    Article  CAS  ADS  Google Scholar 

  99. Ma, Y. X.; Wan, J. Y.; Yang, Y. F.; Ye, Y. S.; Xiao, X.; Boyle, D. T.; Burke, W.; Huang, Z. J.; Chen, H.; Cui, Y. et al. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater. 2022, 12, 2103720.

    Article  CAS  Google Scholar 

  100. Yang, H. X.; Liu, Z. K.; Wang, Y.; Li, N. W.; Yu, L. Multiscale structural gel polymer electrolytes with fast Li+ transport for longlife Li metal batteries. Adv. Funct. Mater. 2023, 33, 2209837.

    Article  CAS  Google Scholar 

  101. Zhou, D.; Liu, R. L.; Zhang, J.; Qi, X. G.; He, Y. B.; Li, B. H.; Yang, Q. H.; Hu, Y. S.; Kang, F. Y. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithiumion and sodium-ion batteries. Nano Energy 2017, 33, 45–54.

    Article  CAS  Google Scholar 

  102. Choudhury, S.; Mangal, R.; Agrawal, A.; Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 2015, 6, 10101.

    Article  CAS  PubMed  ADS  Google Scholar 

  103. Fan, X. Y.; Liu, J.; Song, Z. S.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc-air batteries. Nano Energy 2019, 56, 454–462.

    Article  CAS  Google Scholar 

  104. Yang, P.; Gao, X. W.; Tian, X. L.; Shu, C. Y.; Yi, Y. K.; Liu, P.; Wang, T.; Qu, L.; Tian, B. B.; Li, M. T. et al. Upgrading traditional organic electrolytes toward future lithium metal batteries: A hierarchical nano-SiO2-supported gel polymer electrolyte. ACS Energy Lett. 2020, 5, 1681–1688.

    Article  CAS  Google Scholar 

  105. Kumar, D.; Suleman, M.; Hashmi, S. A. Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium-sulfur batteries. Solid State Ion. 2011, 202, 45–53.

    Article  CAS  Google Scholar 

  106. Verma, H.; Mishra, K.; Rai, D. K. TiO2 nanoparticle dispersed porous gel polymer electrolyte membrane for room temperature Na-S battery. Mater. Today: Proc. 2020, 28, 346–349.

    CAS  Google Scholar 

  107. Sun, L.; Zhuo, K. L.; Chen, Y. J.; Du, Q. Z.; Zhang, S. J.; Wang, J. J. Ionic liquid-based redox active electrolytes for supercapacitors. Adv. Funct. Mater. 2022, 32, 2203611.

    Article  CAS  Google Scholar 

  108. Xia, R.; Zhao, K. N.; Kuo, L. Y.; Zhang, L.; Cunha, D. M.; Wang, Y.; Huang, S. Z.; Zheng, J.; Boukamp, B.; Kaghazchi, P. et al. Nickel niobate anodes for high rate lithium-ion batteries. Adv. Energy Mater. 2022, 12, 2102972.

    Article  CAS  Google Scholar 

  109. Zhang, W. C.; Zhang, J.; Liu, X. C.; Li, H.; Guo, Y.; Geng, C. N.; Tao, Y.; Yang, Q. H. In-situ polymerized gel polymer electrolytes with high room-temperature ionic conductivity and regulated Na+ solvation structure for sodium metal batteries. Adv. Funct. Mater. 2022, 32, 2201205.

    Article  CAS  Google Scholar 

  110. Brutti, S.; Simonetti, E.; De Francesco, M.; Sarra, A.; Paolone, A.; Palumbo, O.; Fantini, S.; Lin, R.; Falgayrat, A.; Choi, H. et al. Ionic liquid electrolytes for high-voltage, lithium-ion batteries. J. Power Sources 2020, 479, 228791.

    Article  CAS  Google Scholar 

  111. Sun, H.; Zhu, G. Z.; Xu, X. T.; Liao, M.; Li, Y. Y.; Angell, M.; Gu, M.; Zhu, Y. M.; Hung, W. H.; Li, J. C. et al. A safe and nonflammable sodium metal battery based on an ionic liquid electrolyte. Nat. Commun. 2019, 10, 3302.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  112. Kumar, D. Effect of organic solvent addition on electrochemical properties of ionic liquid based Na+ conducting gel electrolytes. Solid State Ion. 2018, 318, 65–70.

    Article  CAS  Google Scholar 

  113. Kumar, D.; Kanchan, D. K. Dielectric and electrochemical studies on carbonate free Na-ion conducting electrolytes for sodium-sulfur batteries. J. Energy Storage 2019, 22, 44–49.

    Article  Google Scholar 

  114. Hu, X. F.; Ni, Y. X.; Wang, C. L.; Wang, H.; Matios, E.; Chen, J.; Li, W. Y. Facile-processed nanocarbon-promoted sulfur cathode for highly stable sodium-sulfur batteries. Cell Rep. Phys. Sci. 2020, 7, 100015.

    Article  Google Scholar 

  115. Patel, M.; Chandrappa, K. G.; Bhattacharyya, A. J. Increasing ionic conductivity of polymer-sodium salt complex by addition of a non-ionic plastic crystal. Solid State Ion. 2010, 181, 844–848.

    Article  CAS  Google Scholar 

  116. Lin, S. S.; Hua, H. M.; Lai, P. B.; Zhao, J. B. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Adv. Energy Mater. 2021, 11, 2101775.

    Article  CAS  Google Scholar 

  117. Yokomaku, Y.; Hiraoka, K.; Inaba, K.; Seki, S. Solid gel electrolytes with highly concentrated liquid electrolyte in polymer networks and their physical and electrochemical properties and application to sodium secondary batteries. J. Electrochem. Soc. 2022, 169, 040535.

    Article  CAS  ADS  Google Scholar 

  118. Chiu, L. L.; Chung, S. H. Composite gel-polymer electrolyte for high-loading polysulfide cathodes. J. Mater. Chem. A 2022, 10, 13719–13726.

    Article  CAS  Google Scholar 

  119. Singh, R.; Maheshwaran, C.; Kanchan, D. K.; Mishra, K.; Singh, P. K.; Kumar, D. Ion-transport behavior in tetraethylene glycol dimethyl ether incorporated sodium ion conducting polymer gel electrolyte membranes intended for sodium battery application. J. Mol. Liq. 2021, 336, 116594.

    Article  CAS  Google Scholar 

  120. Ren, Z. H.; Li, J. X.; Gong, Y. Y.; Shi, C.; Liang, J. N.; Li, Y. L.; He, C. X.; Zhang, Q. L.; Ren, X. Z. Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery. Energy Storage Mater. 2022, 51, 130–138.

    Article  Google Scholar 

  121. Lim, D. H.; Agostini, M.; Ahn, J. H.; Matic, A. An electrospun nanofiber membrane as gel-based electrolyte for room-temperature sodium-sulfur batteries. Energy Technol. 2018, 6, 1214–1219.

    Article  CAS  Google Scholar 

  122. Xu, X. F.; Lin, K.; Zhou, D.; Liu, Q.; Qin, X. Y.; Wang, S. W.; He, S.; Kang, F. Y.; Li, B. H.; Wang, G. X. Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem 2020, 6, 902–918.

    Article  CAS  Google Scholar 

  123. Zheng, J. Y.; Li, W. J.; Liu, X. X.; Zhang, J. W.; Feng, X. M.; Chen, W. H. Progress in gel polymer electrolytes for sodium-ion batteries. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12422.

  124. Saroja, A. P. V. K.; Rajamani, A.; Muthusamy, K.; Sundara, R. Repelling polysulfides using white graphite introduced polymer membrane as a shielding layer in ambient temperature sodium sulfur battery. Adv. Mater. Interfaces 2019, 6, 1901497.

    Article  Google Scholar 

  125. Zhou, D.; Tang, X.; Guo, X.; Li, P.; Shanmukaraj, D.; Liu, H.; Gao, X. C.; Wang, Y. Z.; Rojo, T.; Armand, M. et al. Polyolefin-based Janus separator for rechargeable sodium batteries. Angew. Chem., Int. Ed. 2020, 59, 16725–16734.

    Article  CAS  Google Scholar 

  126. Zheng, J. Y.; Sun, Y. K.; Li, W. J.; Feng, X. M.; Chen, W. H.; Zhao, Y. F. Effects of comonomers on the performance of stable phosphonate-based gel terpolymer electrolytes for sodium-ion batteries with ultralong cycling stability. ACS Appl. Mater. Interfaces 2021, 13, 25024–25035.

    Article  CAS  PubMed  Google Scholar 

  127. Sirengo, K.; Babu, A.; Brennan, B.; Pillai, S. C. Ionic liquid electrolytes for sodium-ion batteries to control thermal runaway. J. Energy Chem. 2023, 81, 321–338.

    Article  CAS  Google Scholar 

  128. Wenzel, S.; Metelmann, H.; Raiß, C.; Dürr, A. K.; Janek, J.; Adelhelm, P. Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. J. Power Sources 2013, 243, 758–765.

    Article  CAS  ADS  Google Scholar 

  129. Kim, I.; Park, J. Y.; Kim, C. H.; Park, J. W.; Ahn, J. P.; Ahn, J. H.; Kim, K. W.; Ahn, H. J. A room temperature Na/S battery using a ß′ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode. J. Power Sources 2016, 301, 332–337.

    Article  CAS  ADS  Google Scholar 

  130. Kim, I.; Park, J. Y.; Kim, C. H.; Park, J. W.; Ahn, J. P.; Ahn, J. H.; Kim, K. W.; Ahn, H. J. Sodium polysulfides during charge/discharge of the room-temperature Na/S battery using TEGDME electrolyte. J. Electrochem. Soc. 2016, 163, A611–A616.

    Article  CAS  Google Scholar 

  131. Gross, M. M.; Manthiram, A. Development of low-cost sodium-aqueous polysulfide hybrid batteries. Energy Storage Mater. 2019, 19, 346–351.

    Article  Google Scholar 

  132. Tian, Y. S.; Shi, T.; Richards, W. D.; Li, J. C.; Kim, J. C.; Bo, S. H.; Ceder, G. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ. Sci. 2017, 10, 1150–1166.

    Article  CAS  Google Scholar 

  133. Chi, X. W.; Liang, Y. L.; Hao, F.; Zhang, Y.; Whiteley, J.; Dong, H.; Hu, P.; Lee, S.; Yao, Y. Tailored organic electrode material compatible with sulfide electrolyte for stable all-solid-state sodium batteries. Angew. Chem., Int. Ed. 2018, 57, 2630–2634.

    Article  CAS  Google Scholar 

  134. Wenzel, S.; Leichtweiss, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium ²-alumina for protected sodium metal anodes and sodium all-solid-state batteries. ACS Appl. Mater. Interfaces 2016, 8, 28216–28224.

    Article  CAS  PubMed  Google Scholar 

  135. An, T.; Jia, H. H.; Peng, L. F.; Xie, J. Material and interfacial modification toward a stable room-temperature solid-state Na-S battery. ACS Appl. Mater. Interfaces 2020, 12, 20563–20569.

    Article  CAS  PubMed  Google Scholar 

  136. Li, Y.; Halacoglu, S.; Shreyas, V.; Arnold, W.; Guo, X. L.; Dou, Q. Q.; Jasinski, J. B.; Narayanan, B.; Wang, H. Highly efficient interface stabilization for ambient-temperature quasi-solid-state sodium metal batteries. Chem. Eng. J. 2022, 434, 134679.

    Article  CAS  Google Scholar 

  137. Lim, K.; Fenk, B.; Küster, K.; Acartürk, T.; Weiss, J.; Starke, U.; Popovic, J.; Maier, J. Influence of porosity of sulfide-based artificial solid electrolyte interphases on their performance with sliquid and solid electrolytes in Li and Na metal batteries. ACS Appl. Mater. Interfaces 2022, 14, 16147–16156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wu, E. A.; Banerjee, S.; Tang, H. M.; Richardson, P. M.; Doux, J. M.; Qi, J.; Zhu, Z. Y.; Grenier, A.; Li, Y. X.; Zhao, E. Y. et al. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries. Nat. Commun. 2021, 12, 1256.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  139. Kumar, V.; Wang, Y.; Eng, A. Y. S.; Ng, M. F.; Seh, Z. W. A biphasic interphase design enabling high performance in room temperature sodium-sulfur batteries. Cell Rep. Phys. Sci. 2020, 1, 100044.

    Article  Google Scholar 

  140. Kamath, G.; Cutler, R. W.; Deshmukh, S. A.; Shakourian-Fard, M.; Parrish, R.; Huether, J.; Butt, D. P.; Xiong, H.; Sankaranarayanan, S. K. R. S. In silico based rank-order determination and experiments on nonaqueous electrolytes for sodium ion battery applications. J. Phys. Chem. C 2014, 118, 13406–13416.

    Article  CAS  Google Scholar 

  141. Shin, H.; Baek, M.; Gupta, A.; Char, K.; Manthiram, A.; Choi, J. W. Recent progress in high donor electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2001456.

    Article  CAS  Google Scholar 

  142. Xing, C.; Chen, H.; Qian, S. S.; Wu, Z. Z.; Nizami, A.; Li, X.; Zhang, S. Q.; Lai, C. Regulating liquid and solid-state electrolytes for solid-phase conversion in Li-S batteries. Chem 2022, 8, 1201–1230.

    Article  CAS  Google Scholar 

  143. Ponrouch, A.; Monti, D.; Boschin, A.; Steen, B.; Johansson, P.; Palacín, M. R. Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 22–42.

    Article  CAS  Google Scholar 

  144. Yang, Q.; Deng, N. P.; Chen, J. Y.; Cheng, B. W.; Kang, W. M. The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries. Chem. Eng. J. 2021, 413, 127427.

    Article  CAS  Google Scholar 

  145. Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

    Article  CAS  Google Scholar 

  146. Yan, W.; Wei, J.; Chen, T.; Duan, L.; Wang, L.; Xue, X. L.; Chen, R. P.; Kong, W. H.; Lin, H. N.; Li, C. H. et al. Superstretchable, thermostable and ultrahigh-loading lithium-sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 2021, 80, 105510.

    Article  CAS  Google Scholar 

  147. Xu, X. F.; Zhou, D.; Qin, X. Y.; Lin, K.; Kang, F. Y.; Li, B. H.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 2018, 9, 3870.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  148. Vineeth, S. K.; Tebyetekerwa, M.; Liu, H. W.; Soni, C. B.; Sungjemmenla; Zhao, X. S.; Kumar, V. Progress in the development of solid-state electrolytes for reversible room-temperature sodium-sulfur batteries. Mater. Adv. 2022, 3, 6415–6440.

    Article  CAS  Google Scholar 

  149. Medenbach, L.; Hartmann, P.; Janek, J.; Stettner, T.; Balducci, A.; Dirksen, C.; Schulz, M.; Stelter, M.; Adelhelm, P. A sodium polysulfide battery with liquid/solid electrolyte: Improving sulfur utilization using P2S5 as additive and tetramethylurea as catholyte solvent. Energy Technol. 2020, 8, 1901200.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. X. acknowledges financial support from the National Natural Science Foundations of China (No. 52002358), high-level talent internationalization training project of Henan province, and scientific and technological activities of Henan province for scholars with overseas study experience (No. 002004025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Xu, J. Challenges and prospects for room temperature solid-state sodium-sulfur batteries. Nano Res. 17, 1402–1426 (2024). https://doi.org/10.1007/s12274-023-5993-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5993-3

Keywords

Navigation