Skip to main content
Log in

The activity of Zn precursors determines the cation exchange reaction kinetics with Ag2S: Zn-doped Ag2S or Ag2S@ZnS QDs

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cation exchange (CE) has been emerged as a promising post-synthesis strategy of colloidal nanocrystals. However, it is unclear how the cation precursor affects the CE process and the final colloidal nanocrystals. Herein, we utilized two Zn-B Lewis acid-base adduct complexes (B = oleylamine (OAM) and methanol (MeOH)) as Zn precursors for CE with Ag2S quantum dots (QDs). Our study revealed that the steric hindrance and complexing capabilities of Zn precursor significantly affect the CE kinetics. As a result, the Zn-doped Ag2S (Zn:Ag2S) and Ag2S@ZnS core–shell QDs were successfully obtained with enormous enhancement of their photoluminescence (PL) intensities. Theoretical simulation showed that the Zn-OAM with higher desolvation energy and spatial hindrance tended to form doped Zn:Ag2S QDs due to the inefficient cation exchange. Whereas the Zn-MeOH with lower exchange barrier promoted the conversion of Ag-S to Zn-S, thus forming Ag2S@ZnS core–shell QDs. We anticipate that this finding will enrich the regulatory approaches of post-synthesis of colloidal nanocrystals with desirable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Owen, J.; Brus, L. Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots. J. Am. Chem. Soc. 2017, 139, 10939–10943.

    CAS  Google Scholar 

  2. Lu, H. P.; Carroll, G. M.; Neale, N. R.; Beard, M. C. Infrared quantum dots: Progress, challenges, and opportunities. ACS Nano 2019, 13, 939–953.

    CAS  Google Scholar 

  3. Tang, X.; Ackerman, M. M.; Chen, M. L.; Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 2019, 13, 277–282.

    CAS  Google Scholar 

  4. Sun, Z. Q.; Liu, C.; Yang, H. C.; Yang, X. H.; Zhang, Y. J.; Lin, H. Z.; Li, Y. Y.; Wang, Q. B. AgAuSe quantum dots with absolute photoluminescence quantum yield of 87.2%: The effect of capping ligand chain length. Nano Res. 2022, 15, 8555–8563.

    CAS  Google Scholar 

  5. Zhang, Y. J.; Yang, H. C.; An, X. Y.; Wang, Z.; Yang, X. H.; Yu, M. X.; Zhang, R.; Sun, Z. Q.; Wang, Q. B. Controlled synthesis of Ag2Te@Ag2S core–shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window. Small 2020, 16, 2001003.

    CAS  Google Scholar 

  6. Yang, H. C.; Huang, H. Y.; Ma, X.; Zhang, Y. J.; Yang, X. H.; Yu, M. X.; Sun, Z. Q.; Li, C. Y.; Wu, F.; Wang, Q. B. Au-doped Ag2Te quantum dots with bright NIR-IIb fluorescence for in situ monitoring of angiogenesis and arteriogenesis in a hindlimb ischemic model. Adv. Mater. 2021, 33, 2103953.

    CAS  Google Scholar 

  7. Dutta, A.; Bera, R.; Ghosh, A.; Patra, A. Ultrafast carrier dynamics of photo-induced Cu-doped CdSe nanocrystals. J. Phys. Chem. C 2018, 122, 16992–17000.

    CAS  Google Scholar 

  8. Jeong, B. G.; Chang, J. H.; Hahm, D.; Rhee, S.; Park, M.; Lee, S.; Kim, Y.; Shin, D.; Park, J. W.; Lee, C. et al. Interface polarization in heterovalent core–shell nanocrystals. Nat. Mater. 2022, 21, 246–252.

    CAS  Google Scholar 

  9. De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852–10887.

    CAS  Google Scholar 

  10. Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.

    CAS  Google Scholar 

  11. Gupta, S.; Kershaw, S. V.; Rogach, A. L. 25th anniversary article: Ion exchange in colloidal nanocrystals. Adv. Mater. 2013, 25, 6923–6944.

    CAS  Google Scholar 

  12. van der Stam, W.; Geuchies, J. J.; Altantzis, T.; van den Bos, K. H. W.; Meeldijk, J. D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. Highly emissive divalent-ion-doped colloidal CsPb1−xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 2017, 139, 4087–4097.

    CAS  Google Scholar 

  13. Butterfield, A. G.; McCormick, C. R.; Veglak, J. M.; Schaak, R. E. Morphology-dependent phase selectivity of cobalt sulfide during nanoparticle cation exchange reactions. J. Am. Chem. Soc. 2021, 143, 7915–7919.

    CAS  Google Scholar 

  14. Pinchetti, V.; Di, Q. M.; Lorenzon, M.; Camellini, A.; Fasoli, M.; Zavelani-Rossi, M.; Meinardi, F.; Zhang, J. T.; Crooker, S. A.; Brovelli, S. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. Nat. Nanotechnol. 2018, 13, 145–151.

    CAS  Google Scholar 

  15. Eilers, J.; Groeneveld, E.; de Mello Donegá, C.; Meijerink, A. Optical properties of Mn-doped ZnTe magic size nanocrystals. J. Phys. Chem. Lett. 2012, 3, 1663–1667.

    CAS  Google Scholar 

  16. Yang, H. C.; Li, R. F.; Zhang, Y. J.; Yu, M. X.; Wang, Z.; Liu, X.; You, W. W.; Tu, D. T.; Sun, Z. Q.; Zhang, R. et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window. J. Am. Chem. Soc. 2021, 143, 2601–2607.

    CAS  Google Scholar 

  17. Bai, B.; Xu, M.; Li, N.; Chen, W. X.; Liu, J. J.; Liu, J.; Rong, H. P.; Fenske, D.; Zhang, J. T. Semiconductor nanocrystal engineering by applying thiol- and solvent-coordinated cation exchange kinetics. Angew. Chem., Int. Ed. 2019, 58, 4852–4857.

    CAS  Google Scholar 

  18. Li, D.; Zhang, X. L.; Ramzan, M.; Gu, K.; Chen, Y.; Zhang, J. T.; Zou, B. S.; Zhong, H. Z. Colloidal synthesis of giant shell PbSe-based core/shell quantum dots in polar solvent: Cation exchange versus epitaxial growth. Chem. Mater. 2020, 32, 6650–6656.

    CAS  Google Scholar 

  19. Hinterding, S. O. M.; Berends, A. C.; Kurttepeli, M.; Moret, M. E.; Meeldijk, J. D.; Bals, S.; van der Stam, W.; de Mello Donega, C. Tailoring Cu+ for Ga3+ cation exchange in Cu2−xS and CuInS2 nanocrystals by controlling the Ga precursor chemistry. ACS Nano 2019, 13, 12880–12893.

    CAS  Google Scholar 

  20. Hewavitharana, I. K.; Brock, S. L. When ligand exchange leads to ion exchange: Nanocrystal facets dictate the outcome. ACS Nano 2017, 11, 11217–11224.

    CAS  Google Scholar 

  21. Fan, Z. C.; Lin, L. C.; Buijs, W.; Vlugt, T. J. H.; van Huis, M. A. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands. Nat. Commun. 2016, 7, 11503.

    CAS  Google Scholar 

  22. van der Stam, W.; Berends, A. C.; Rabouw, F. T.; Willhammar, T.; Ke, X. X.; Meeldijk, J. D.; Bals, S.; de Mello Donega, C. Luminescent CuInS2 quantum dots by partial cation exchange in Cu2−xS nanocrystals. Chem. Mater. 2015, 27, 621–628.

    CAS  Google Scholar 

  23. Beberwyck, B. J.; Surendranath, Y.; Alivisatos, A. P. Cation exchange: A versatile tool for nanomaterials synthesis. J. Phys. Chem. C 2013, 117, 19759–19770.

    CAS  Google Scholar 

  24. Sahu, A.; Kang, M. S.; Kompch, A.; Notthoff, C.; Wills, A. W.; Deng, D.; Winterer, M.; Frisbie, C. D.; Norris, D. J. Electronic impurity doping in CdSe nanocrystals. Nano Lett. 2012, 12, 2587–2594.

    CAS  Google Scholar 

  25. Jharimune, S.; Sathe, A. A.; Rioux, R. M. Thermochemical measurements of cation exchange in CdSe nanocrystals using isothermal titration calorimetry. Nano Lett. 2018, 18, 6795–6803.

    CAS  Google Scholar 

  26. Gui, J.; Ji, M. W.; Liu, J. J.; Xu, M.; Zhang, J. T.; Zhu, H. S. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: Old concept, new applications. Angew. Chem. 2015, 127, 3754–3758.

    Google Scholar 

  27. Akkerman, Q. A.; Genovese, A.; George, C.; Prato, M.; Moreels, I.; Casu, A.; Marras, S.; Curcio, A.; Scarpellini, A.; Pellegrino, T. et al. From binary Cu2S to ternary Cu−In−S and quaternary Cu−In−Zn−S nanocrystals with tunable composition via partial cation exchange. ACS Nano 2015, 9, 521–531.

    CAS  Google Scholar 

  28. Justo, Y.; Goris, B.; Kamal, J. S.; Geiregat, P.; Bals, S.; Hens, Z. Multiple dot-in-rod PbS/CdS heterostructures with high photoluminescence quantum yield in the near-infrared. J. Am. Chem. Soc. 2012, 134, 5484–5487.

    CAS  Google Scholar 

  29. Zhang, J. B.; Chernomordik, B. D.; Crisp, R. W.; Kroupa, D. M.; Luther, J. M.; Miller, E. M.; Gao, J. B.; Beard, M. C. Preparation of Cd/Pb chalcogenide heterostructured janus particles via controllable cation exchange. ACS Nano 2015, 9, 7151–7163.

    CAS  Google Scholar 

  30. Shen, S. L.; Zhang, Y. J.; Peng, L.; Du, Y. P.; Wang, Q. B. Matchstick-shaped Ag2S−ZnS heteronanostructures preserving both UV/blue and near-infrared photoluminescence. Angew. Chem., Int. Ed. 2011, 50, 7115–7118.

    CAS  Google Scholar 

  31. Gholizadeh, R.; Wang, Y. J. Molecular dynamics simulation of the aggregation phenomenon in the late stages of silica materials preparation. Chem. Eng. Sci. 2018, 184, 62–71.

    CAS  Google Scholar 

  32. Pracht, P.; Bohle, F.; Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192.

    CAS  Google Scholar 

  33. Grimme, S.; Bannwarth, C.; Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009.

    CAS  Google Scholar 

  34. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16. Gaussian, Inc. Wallingford, CT, 2016.

    Google Scholar 

  35. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Google Scholar 

  36. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.

    CAS  Google Scholar 

  37. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

    CAS  Google Scholar 

  38. Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

    Google Scholar 

  39. Zhang, J. T.; Di, Q. M.; Liu, J.; Bai, B.; Liu, J.; Xu, M.; Liu, J. J. Heterovalent doping in colloidal semiconductor nanocrystals: Cation-exchange-enabled new accesses to tuning dopant luminescence and electronic impurities. J. Phys. Chem. Lett. 2017, 8, 4943–4953.

    CAS  Google Scholar 

  40. Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, 2007.

    Google Scholar 

  41. Mu, L. L.; Feng, C. J.; He, H. M. Topological research on lattice energies for inorganic compounds. MATCH Commun. Math. Comput. Chem. 2006, 56, 97–111.

    CAS  Google Scholar 

  42. Sun, J. Y.; Yu, W. L.; Usman, A.; Isimjan, T. T.; DGobbo, S.; Alarousu, E.; Takanabe, K.; Mohammed, O. F. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation. J. Phys. Chem. Lett. 2014, 5, 659–665.

    CAS  Google Scholar 

  43. Underwood, D. F.; Kippeny, T.; Rosenthal, S. J. Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy. J. Phys. Chem. B 2001, 105, 436–443.

    CAS  Google Scholar 

  44. Peng, P.; Sadtler, B.; Alivisatos, A. P.; Saykally, R. J. Exciton dynamics in CdS−Ag2S nanorods with tunable composition probed by ultrafast transient absorption spectroscopy. J. Phys. Chem. C 2010, 114, 5879–5885.

    CAS  Google Scholar 

  45. Rivest, J. B.; Jain, P. K. Cation exchange on the nanoscale: An emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 2013, 42, 89–96.

    CAS  Google Scholar 

  46. Qin, R. Z.; Wang, Y. T.; Zhang, M. Z.; Wang, Y.; Ding, S. X.; Song, A. Y.; Yi, H. C.; Yang, L. Y.; Song, Y. L.; Cui, Y. H. et al. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 2021, 80, 105478.

    CAS  Google Scholar 

  47. Song, J. L. Q.; Ma, C.; Zhang, W. Z.; Li, X. D.; Zhang, W. T.; Wu, R. B.; Cheng, X. C.; Ali, A.; Yang, M. Y.; Zhu, L. X. et al. Bandgap and structure engineering via cation exchange: From binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging. ACS Appl. Mater. Interfaces 2016, 8, 24826–24836.

    CAS  Google Scholar 

  48. Groeneveld, E.; Witteman, L.; Lefferts, M.; Ke, X. X.; Bals, S.; Van Tendeloo, G.; de Mello Donega, C. Tailoring ZnSe−CdSe colloidal quantum dots via cation exchange: From core/shell to alloy nanocrystals. ACS Nano 2013, 7, 7913–7930.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Key Research and Development Program of China (No. 2021YFF0701804) and the financial support from the National Natural Science Foundation of China (Nos. 21934007, 22001262, 22177128, and 22271308), the Science and Technology Project of Suzhou (No. SZS201904), and the Natural Science Foundation of Jiangsu Province (Nos. BK20222016, BK20200254, and BK20221262). The authors also acknowledge Prof. Zhujun Wang of ShanghaiTech Univesity for performing the HAADF-STEM and EDS element maps test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchao Yang, Yejun Zhang or Qiangbin Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Yang, H., Sun, Z. et al. The activity of Zn precursors determines the cation exchange reaction kinetics with Ag2S: Zn-doped Ag2S or Ag2S@ZnS QDs. Nano Res. 16, 12315–12322 (2023). https://doi.org/10.1007/s12274-023-5952-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5952-z

Keywords

Navigation