Skip to main content
Log in

Recent advances in bimetallic metal-organic frameworks and their derivatives for thermal catalysis

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Compared with monometallic metal-organic frameworks (MOFs) that are synthesized by reacting inorganic metal ions or clusters with bidentate or multidentate ligands via hydrothermal or solvothermal methods, the construction of heterogeneous frameworks like at least two kinds of metal sites in the individual nodes is proved to be an effective way to modulate their properties for advanced catalysis, especially for selective catalysis and multifunctional catalysis. However, it is still very challenging to precisely characterize their microstructures and reveal the relationship among the composition, structure, and their performances. Therefore, it is necessary to summarize the recent progress on bimetallic MOFs for thermal catalysis. First, we summarize the synthesis strategies and characterization methods of bimetallic MOFs and their derivatives. Second, the application of bimetallic MOFs and their derivatives as catalysts in thermal catalysis is discussed, and the relationship among the active components, structures, and their properties is elucidated. Third, the potential challenges and prospects of bimetallic MOF based nanocatalysts are proposed. This review will bring some insights into the design and preparation of bimetallic MOFs based nanocatalysts in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Google Scholar 

  2. Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

    CAS  Google Scholar 

  3. Liu, D.; Wan, J. W.; Pang, G. S.; Tang, Z. Y. Hollow metal-organic-framework micro/nanostructures and their derivatives: Emerging multifunctional materials. Adv. Mater. 2019, 31, 1803291.

    Google Scholar 

  4. Wang, W. H.; Yan, H. W.; Anand, U.; Mirsaidov, U. Visualizing the conversion of metal-organic framework nanoparticles into hollow layered double hydroxide nanocages. J. Am. Chem. Soc. 2021, 143, 1854–1862.

    CAS  Google Scholar 

  5. Ma, Y. J.; Lu, W. P.; Han, X.; Chen, Y. L.; Da Silva, I.; Lee, D.; Sheveleva, A. M.; Wang, Z.; Li, J. N.; Li, W. Y. et al. Direct observation of ammonia storage in UiO-66 incorporating Cu(II) binding sites. J. Am. Chem. Soc. 2022, 144, 8624–8632.

    CAS  Google Scholar 

  6. Gao, M. L.; Li, L. Y.; Sun, Z. X.; Li, J. R.; Jiang, H. L. Facet engineering of a metal-organic framework support modulates the microenvironment of palladium nanoparticles for selective hydrogenation. Angew. Chem., Int. Ed. 2022, 61, e202211216.

    CAS  Google Scholar 

  7. Zou, Y. H.; Huang, Y. B.; Si, D. H.; Yin, Q.; Wu, Q. J.; Weng, Z. X.; Cao, R. Porous metal-organic framework liquids for enhanced CO2 adsorption and catalytic conversion. Angew. Chem., Int. Ed. 2021, 60, 20915–20920.

    CAS  Google Scholar 

  8. Abednatanzi, S.; Gohari Derakhshandeh, P.; Depauw, H.; Coudert, F. X.; Vrielinck, H.; Van Der Voort, P.; Leus, K. Mixed-metal metal-organic frameworks. Chem. Soc. Rev. 2019, 48, 2535–2565.

    CAS  Google Scholar 

  9. Wang, H. W.; Zheng, F. B.; Xue, G. X.; Wang, Y. L.; Li, G. D.; Tang, Z. Y. Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis. Sci. China Chem. 2021, 64, 1854–1874.

    CAS  Google Scholar 

  10. Yang, Q. H.; Wang, Y. M.; Tang, X.; Zhang, Q. J.; Dai, S.; Peng, H. T.; Lin, Y. C.; Tian, Z. Q.; Lu, Z. Y.; Chen, L. Ligand defect density regulation in metal-organic frameworks by functional group engineering on linkers. Nano Lett. 2022, 22, 838–845.

    CAS  Google Scholar 

  11. Wen, L. L.; Sun, K.; Liu, X. S.; Yang, W. J.; Li, L. Y.; Jiang, H. L. Electronic state and microenvironment modulation of metal nanoparticles stabilized by MOFs for boosting electrocatalytic nitrogen reduction. Adv. Mater. 2023, 35, 2210669.

    CAS  Google Scholar 

  12. Ren, Z.; Zhou, W. Q.; Weng, J. N.; Qin, Z. Y.; Liu, L. W.; Ji, N.; Chen, C.; Shi, H. H.; Shi, W. X.; Zhang, X. L. et al. Phase transition of metal-organic frameworks for the encapsulation of enzymes. J. Mater. Chem. A 2022, 10, 19881–19892.

    CAS  Google Scholar 

  13. Xiao, Y. W.; Chen, C.; Wu, Y. L.; Yin, Y. T.; Wu, H. B.; Li, H. F.; Fan, Y.; Wu, J. S.; Li, S.; Huang, X. et al. Fabrication of two-dimensional metal-organic framework nanosheets through crystal dissolution-growth kinetics. ACS Appl. Mater. Interfaces 2022, 14, 7192–7199.

    CAS  Google Scholar 

  14. Li, Q. X.; Si, D. H.; Lin, W.; Wang, Y. B.; Zhu, H. J.; Huang, Y. B.; Cao, R. Highly efficient electroreduction of CO2 by defect single-atomic Ni-N3 sites anchored on ordered micro-macroporous carbons. Sci. China Chem. 2022, 65, 1584–1593.

    CAS  Google Scholar 

  15. Liu, D.; Lang, J. P.; Abrahams, B. F. Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal-to-single-crystal transformation. J. Am. Chem. Soc. 2011, 133, 11042–11045.

    CAS  Google Scholar 

  16. Liu, C. Y.; Chen, X. R.; Chen, H. X.; Niu, Z.; Hirao, H.; Braunstein, P.; Lang, J. P. Ultrafast luminescent light-up guest detection based on the lock of the host molecular vibration. J. Am. Chem. Soc. 2020, 142, 6690–6697.

    CAS  Google Scholar 

  17. Choe, K.; Zheng, F. B.; Wang, H.; Yuan, Y.; Zhao, W. S.; Xue, G. X.; Qiu, X. Y.; Ri, M.; Shi, X. H.; Wang, Y. L. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 3650–3657.

    CAS  Google Scholar 

  18. Wang, S. J.; Ly, H. G. T.; Wahiduzzaman, M.; Simms, C.; Dovgaliuk, I.; Tissot, A.; Maurin, G.; Parac-Vogt, T. N.; Serre, C. A zirconium metal-organic framework with SOC topological net for catalytic peptide bond hydrolysis. Nat. Commun. 2022, 13, 1284.

    CAS  Google Scholar 

  19. Wang, Q. Y.; Sun, Z. B.; Zhang, M.; Zhao, S. N.; Luo, P.; Gong, C. H.; Liu, W. X.; Zang, S. Q. Cooperative catalysis between dual copper centers in a metal-organic framework for efficient detoxification of chemical warfare agent simulants. J. Am. Chem. Soc. 2022, 144, 21046–21055.

    CAS  Google Scholar 

  20. Wei, R. J.; You, P. Y.; Duan, H. Y.; Xie, M.; Xia, R. Q.; Chen, X.; Zhao, X. X.; Ning, G. H.; Cooper, A. I.; Li, D. Ultrathin metal-organic framework nanosheets exhibiting exceptional catalytic activity. J. Am. Chem. Soc. 2022, 144, 17487–17495.

    CAS  Google Scholar 

  21. Stanley, P. M.; Haimerl, J.; Shustova, N. B.; Fischer, R. A.; Warnan, J. Merging molecular catalysts and metal-organic frameworks for photocatalytic fuel production. Nat. Chem. 2022, 14, 1342–1356.

    CAS  Google Scholar 

  22. Yi, B.; Wong, Y. L.; Li, K. D.; Hou, C. S.; Ma, T. R.; Xu, Z. T.; Yao, X. Highly catalytic metal-organic framework coating enabled by liquid superwetting and confinement. Nano Res. 2023, 16, 7716–7723.

    CAS  Google Scholar 

  23. He, C.; Liang, J.; Zou, Y. H.; Yi, J. D.; Huang, Y. B.; Cao, R. Metal-organic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl. Sci. Rev. 2021, 9, nwab157.

    Google Scholar 

  24. Zhang, J.; Shen, Y.; Jin, N.; Zhao, X. P.; Li, H. F.; Ji, N.; Li, Y. J.; Zha, B.; Li, L.; Yao, X. K. et al. Chemo-biocascade reactions enabled by metal-organic framework micro-nanoreactor. Research, in press, DOI: https://doi.org/10.34133/2022/9847698.

  25. Wang, P.; Zhang, P.; Shen, Y.; Wang, L.; Li, H. F.; Zhang, W. L.; Gu, Z. D.; Zhang, X. L.; Fu, Y.; Zhang, W. N. et al. Construction of hierarchical-porous metal-organic frameworks through esterification reaction for efficient catalysis. Chem. Commun. 2021, 57, 10795–10798.

    CAS  Google Scholar 

  26. Wang, M. F.; Mi, Y.; Hu, F. L.; Hirao, H.; Niu, Z.; Braunstein, P.; Lang, J. P. Controllable multiple-step configuration transformations in a thermal/photoinduced reaction. Nat. Commun. 2022, 13, 2847.

    CAS  Google Scholar 

  27. Chen, S. L.; Mi, Y.; Hu, F. L.; Young, D. J.; Lang, J. P. Pore-directed solid-state selective photoinduced E-Z isomerization and dimerization within metal-organic frameworks. CCS Chem. 2023, 5, 1225–1232.

    CAS  Google Scholar 

  28. Li, F. L.; Shao, Q.; Huang, X. Q.; Lang, J. P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1888–1892.

    CAS  Google Scholar 

  29. Xu, R.; Si, D. H.; Zhao, S. S.; Wu, Q. J.; Wang, X. S.; Liu, T. F.; Zhao, H.; Cao, R.; Huang, Y. B. Tandem photocatalysis of CO2 to C2H4 via a synergistic rhenium-(I) bipyridine/copper-porphyrinic triazine framework. J. Am. Chem. Soc. 2023, 145, 8261–8270.

    CAS  Google Scholar 

  30. Wan, L. B.; Liu, H.; Huang, C. X.; Shen, X. T. Enzyme-like MOFs: Synthetic molecular receptors with high binding capacity and their application in selective photocatalysis. J. Mater. Chem. A 2020, 8, 25931–25940.

    CAS  Google Scholar 

  31. Li, D.; Liu, T. T.; Yan, Z. Y.; Zhen, L.; Liu, J.; Wu, J.; Feng, Y. J. MOF-derived Cu2O/Cu nanospheres anchored in nitrogen-doped hollow porous carbon framework for increasing the selectivity and activity of electrochemical CO2-to-formate conversion. ACS Appl. Mater. Interfaces 2020, 12, 7030–7037.

    CAS  Google Scholar 

  32. Liu, S. J.; Chi, D. J.; Zou, Q. C.; Ma, Y.; Chen, R.; Zhang, K. MOFs-derived MoS2/C3N4 composites with highly efficient charge separation for photocatalytic H2 evolution. Inorg. Chim. Acta 2022, 533, 120787.

    CAS  Google Scholar 

  33. He, T.; Kong, X. J.; Li, J. R. Chemically stable metal-organic frameworks: Rational construction and application expansion. Acc. Chem. Res. 2021, 54, 3083–3094.

    CAS  Google Scholar 

  34. Zhang, X. Y.; Zhang, S. T.; Tang, Y. J.; Huang, X.; Pang, H. Recent advances and challenges of metal-organic framework/graphene-based composites. Compos. B Eng. 2022, 230, 109532.

    CAS  Google Scholar 

  35. Zhao, X.; Sun, L.; Zhai, Z. X.; Tian, D.; Wang, Y.; Zou, X. Q.; Min, C. G.; Zhuang, C. F. An ultrastable La-MOF for catalytic hydrogen transfer of furfural: In situ activation of the surface. Nanoscale 2023, 15, 6645–6654.

    CAS  Google Scholar 

  36. Shi, H.; He, Y.; Li, Y. B.; He, T.; Luo, P. Y. Confined ultrasmall MOF nanoparticles anchored on a 3D-graphene network as efficient and broad pH-adaptive photo Fenton-like catalysts. Environ. Sci. Nano 2022, 9, 1091–1105.

    CAS  Google Scholar 

  37. Li, S. S.; Gao, Y. Q.; Li, N.; Ge, L.; Bu, X. H.; Feng, P. Y. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927.

    CAS  Google Scholar 

  38. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    CAS  Google Scholar 

  39. Yang, Y. Z.; Zhao, L. Q.; Gao, X. Y.; Zhao, Y. F. Constructing ultrafine monodispersed Co2P/(0.59-Cu3P) on Cu doped CoZn-ZIF derived porous N-doped carbon for highly efficient dehydrogenation of ammonia borane. Nano Res. 2023, 16, 6687–6700.

    CAS  Google Scholar 

  40. Masoomi, M. Y.; Morsali, A.; Dhakshinamoorthy, A.; Garcia, H. Mixed-metal MOFs: Unique opportunities in metal-organic framework (MOF) functionality and design. Angew. Chem., Int. Ed. 2019, 58, 15188–15205.

    CAS  Google Scholar 

  41. Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew. Chem., Int. Ed. 2019, 58, 7051–7056.

    CAS  Google Scholar 

  42. Chen, L. Y.; Wang, H. F.; Li, C. X.; Xu, Q. Bimetallic metal-organic frameworks and their derivatives. Chem. Sci. 2020, 11, 5369–5403.

    CAS  Google Scholar 

  43. Rezki, M.; Septiani, N. L. W.; Iqbal, M.; Adhika, D. R.; Wenten, I. G.; Yuliarto, B. Review—Recent advance in multi-metallic metal organic frameworks (MM-MOFs) and their derivatives for electrochemical biosensor application. J. Electrochem. Soc. 2022, 169, 017504.

    CAS  Google Scholar 

  44. Wang, Y. M.; Tian, Z. Q.; Yang, Q. H.; Tong, K. C.; Tang, X.; Zhang, N.; Zhou, J.; Zhang, L. J.; Zhang, Q. J.; Dai, S. et al. Atomically dispersed dual metal sites boost the efficiency of olefins epoxidation in tandem with CO2 cycloaddition. Nano Lett. 2022, 22, 8381–8388.

    CAS  Google Scholar 

  45. Dang, S.; Zhu, Q. L.; Xu, Q. Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 2017, 3, 17075.

    Google Scholar 

  46. Wang, H. J.; Wu, X. D.; Liu, G. Y.; Wu, S. Y.; Xu, R. Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction. Nano Res. 2023, 16, 4546–4553.

    CAS  Google Scholar 

  47. Chen, L.; Chen, Z.; Liu, X. D.; Wang, X. L. Bimetallic metal-organic framework derived doped carbon nanostructures as highperformance electrocatalyst towards oxygen reactions. Nano Res. 2021, 14, 1533–1540.

    CAS  Google Scholar 

  48. Lu, G. P.; Sun, K. K.; Lin, Y. M.; Du, Q. X.; Zhang, J. W.; Wang, K.; Wang, P. C. Single-atomic-site iron on N-doped carbon for chemoselective reduction of nitroarenes. Nano Res. 2022, 15, 603–611.

    CAS  Google Scholar 

  49. Wang, H. Q. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

    CAS  Google Scholar 

  50. Shao, S. X.; Cui, C. Q.; Tang, Z. Y.; Li, G. D. Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products. Nano Res. 2022, 15, 10110–10133.

    CAS  Google Scholar 

  51. Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R. Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions. Chem. Soc. Rev. 2017, 46, 126–157.

    CAS  Google Scholar 

  52. Zhou, Y. T.; Abazari, R.; Chen, J.; Tahir, M.; Kumar, A.; Ikreedeegh, R. R.; Rani, E.; Singh, H.; Kirillov, A. M. Bimetallic metal-organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications. Coord. Chem. Rev. 2022, 451, 214264.

    CAS  Google Scholar 

  53. Liu, S.; Qiu, Y. Z.; Liu, Y. F.; Zhang, W. F.; Dai, Z.; Srivastava, D.; Kumar, A.; Pan, Y.; Liu, J. Q. Recent advances in bimetallic metal-organic frameworks (BMOFs): Synthesis, applications and challenges. New J. Chem. 2022, 46, 13818–13837.

    CAS  Google Scholar 

  54. Unnikrishnan, V.; Zabihi, O.; Ahmadi, M.; Li, Q. X.; Blanchard, P.; Kiziltas, A.; Naebe, M. Metal-organic framework structure-property relationships for high-performance multifunctional polymer nanocomposite applications. J. Mater. Chem. A 2021, 9, 4348–4378.

    CAS  Google Scholar 

  55. Gu, L.; Deng, G. Z.; Huang, R. T.; Shi, X. Y. Optimization of Fe/Ni organic frameworks with core–shell structures for efficient visible-light-driven reduction of carbon dioxide to carbon monoxide. Nanoscale 2022, 14, 15821–15831.

    CAS  Google Scholar 

  56. Huo, L. M.; Wang, L.; Li, J. J.; Pu, Y. F.; Xuan, K.; Qiao, C. Z.; Yang, H. Cerium doped Zr-based metal-organic framework as catalyst for direct synthesis of dimethyl carbonate from CO2 and methanol. J. CO2 Util. 2023, 68, 102352.

    CAS  Google Scholar 

  57. Ma, D.; Huang, X.; Zhang, Y.; Wang, L.; Wang, B. Metal-organic frameworks: Synthetic methods for industrial production. Nano Res. 2023, 16, 7906–7925.

    CAS  Google Scholar 

  58. Yusuf, V. F.; Malek, N. I.; Kailasa, S. K. Review on metal-organic framework classification, synthetic approaches, and influencing factors: Applications in energy, drug delivery, and wastewater treatment. ACS Omega 2022, 7, 44507–44531.

    CAS  Google Scholar 

  59. Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodríguez, J. J.; Belver, C. A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts 2019, 9, 52.

    Google Scholar 

  60. Zhang, X. L.; Han, X.; Zhu, F. Y.; Zhou, C. Y.; Cao, X. Q.; Lang, J. P.; Gu, H. W. Route to the structure-controlled synthesis of Fe nanobelts and their oxygen evolution reaction application. Inorg. Chem. 2022, 61, 3024–3028.

    CAS  Google Scholar 

  61. Rehman, A.; Farrukh, S.; Hussain, A.; Pervaiz, E. Synthesis and effect of metal-organic frame works on CO2 adsorption capacity at various pressures: A contemplating review. Energy Environ. 2020, 31, 367–388.

    CAS  Google Scholar 

  62. Safaei, M.; Foroughi, M. M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal-organic frameworks: Synthesis and applications. Trends Analyt. Chem. 2019, 118, 401–425.

    CAS  Google Scholar 

  63. Annamalai, J.; Murugan, P.; Ganapathy, D.; Nallaswamy, D.; Atchudan, R.; Arya, S.; Khosla, A.; Barathi, S.; Sundramoorthy, A. K. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications—A review. Chemosphere 2022, 298, 134184.

    CAS  Google Scholar 

  64. Li, Y.; Wen, G. L.; Li, J. Z.; Li, Q. R.; Zhang, H. X.; Tao, B.; Zhang, J. Z. Synthesis and shaping of metal-organic frameworks: A review. Chem. Commun. 2022, 58, 11488–11506.

    CAS  Google Scholar 

  65. Alizadeh, S.; Nematollahi, D. Electrochemically assisted self-assembly technique for the fabrication of mesoporous metal-organic framework thin films: Composition of 3D hexagonally packed crystals with 2D honeycomb-like mesopores. J. Am. Chem. Soc. 2017, 139, 4753–4761.

    CAS  Google Scholar 

  66. Zhou, S.; Shekhah, O.; Jia, J. T.; Czaban-Jóźwiak, J.; Bhatt, P. M.; Ramírez, A.; Gascon, J.; Eddaoudi, M. Electrochemical synthesis of continuous metal-organic framework membranes for separation of hydrocarbons. Nat. Energy 2021, 6, 882–891.

    CAS  Google Scholar 

  67. Vaitsis, C.; Kanellou, E.; Pandis, P. K.; Papamichael, I.; Sourkouni, G.; Zorpas, A. A.; Argirusis, C. Sonochemical synthesis of zinc adipate metal-organic framework (MOF) for the electrochemical reduction of CO2: MOF and circular economy potential. Sustainable Chem. Pharm. 2022, 29, 100786.

    CAS  Google Scholar 

  68. Dadashi, J.; Khaleghian, M.; Hanifehpour, Y.; Mirtamizdoust, B.; Joo, S. W. Lead(II)-azido metal-organic coordination polymers: Synthesis, structure and application in PbO nanomaterials preparation. Nanomaterials 2022, 12, 2257.

    CAS  Google Scholar 

  69. Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal organic frameworks (MOFs) and ultrasound: A review. Ultrason. Sonochem. 2019, 52, 106–119.

    CAS  Google Scholar 

  70. Zorainy, M. Y.; Titi, H. M.; Kaliaguine, S.; Boffito, D. C. Multivariate metal-organic framework MTV-MIL-101 via post-synthetic cation exchange: Is it truly achievable. Dalton Trans. 2022, 51, 3280–3294.

    CAS  Google Scholar 

  71. Sheta, S. M.; Salem, S. R.; El-Sheikh, S. M. A novel iron(III)-based MOF: Synthesis, characterization, biological, and antimicrobial activity study. J. Mater. Res. 2022, 37, 2356–2367.

    CAS  Google Scholar 

  72. Waitschat, S.; Fröhlich, D.; Reinsch, H.; Terraschke, H.; Lomachenko, K. A.; Lamberti, C.; Kummer, H.; Helling, T.; Baumgartner, M.; Henninger, S. et al. Synthesis of M-UiO-66 (M = Zr, Ce or Hf) employing 2, 5-pyridinedicarboxylic acid as a linker: Defect chemistry, framework hydrophilisation and sorption properties. Dalton Trans. 2018, 47, 1062–1070.

    CAS  Google Scholar 

  73. Qin, J. H.; Zhang, J. R.; Xiao, Z.; Wu, Y. P.; Xu, H. M.; Yang, X. G.; Ma, L. F.; Li, D. S. Topology- and guest-dependent photoelectric conversion of 2D anionic pyrene-based metal-organic framework. Cryst. Growth Des. 2022, 22, 4018–4024.

    CAS  Google Scholar 

  74. Ling, J.; Zhou, A. N.; Wang, W. Z.; Jia, X. Y.; Ma, M. D.; Li, Y. Z. One-pot method synthesis of bimetallic MgCu-MOF-74 and its CO2 adsorption under visible light. ACS Omega 2022, 7, 19920–19929.

    CAS  Google Scholar 

  75. Gao, Z. Y.; Liang, L.; Zhang, X.; Xu, P.; Sun, J. M. Facile one-pot synthesis of Zn/Mg-MOF-74 with unsaturated coordination metal centers for efficient CO2 adsorption and conversion to cyclic carbonates. ACS Appl. Mater. Interfaces 2021, 13, 61334–61345.

    CAS  Google Scholar 

  76. Lammert, M.; Glißmann, C.; Stock, N. Tuning the stability of bimetallic Ce(IV)/Zr(IV)-based MOFs with UiO-66 and MOF-808 structures. Dalton Trans. 2017, 46, 2425–2429.

    CAS  Google Scholar 

  77. Zhai, Q. G.; Bu, X. H.; Mao, C. Y.; Zhao, X.; Feng, P. Y. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks. J. Am. Chem. Soc. 2016, 138, 2524–2527.

    CAS  Google Scholar 

  78. Khosravi, F.; Gholinejad, M.; Sansano, J. M.; Luque, R. Bimetallic Fe-Cu metal organic frameworks for room temperature catalysis. Appl. Organomet. Chem. 2022, 36, e6749.

    CAS  Google Scholar 

  79. Wang, D. K.; Suo, M. J.; Lai, S. Q.; Deng, L. Q.; Liu, J. Y.; Yang, J.; Chen, S. Q.; Wu, M. F.; Zou, J. P. Photoinduced acceleration of Fe3+/Fe2+ cycle in heterogeneous FeNi-MOFs to boost peroxodisulfate activation for organic pollutant degradation. Appl. Catal. B Environ. 2023, 321, 122054.

    CAS  Google Scholar 

  80. Das, S.; Kim, H.; Kim, K. Metathesis in single crystal: Complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. J. Am. Chem. Soc. 2009, 131, 3814–3815.

    CAS  Google Scholar 

  81. Zhang, Z. X.; Xiao, Y.; Cui, M. F.; Tang, J. H.; Fei, Z. Y.; Liu, Q.; Chen, X.; Qiao, X. Modulating the basicity of Zn-MOF-74 via cation exchange with calcium ions. Dalton Trans. 2019, 48, 14971–14974.

    CAS  Google Scholar 

  82. Tu, B. B.; Pang, Q. Q.; Wu, D. F.; Song, Y. N.; Weng, L. H.; Li, Q. W. Ordered vacancies and their chemistry in metal-organic frameworks. J. Am. Chem. Soc. 2014, 136, 14465–14471.

    CAS  Google Scholar 

  83. Shultz, A. M.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Post-synthesis modification of a metal-organic framework to form metallosalen-containing MOF materials. J. Am. Chem. Soc. 2011, 133, 13252–13255.

    CAS  Google Scholar 

  84. Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 2018, 11, 163–173.

    CAS  Google Scholar 

  85. Yusuf, M.; Hira, S. A.; Lim, H.; Song, S.; Park, S.; Park, K. H. Core–shell Cu2S: NiS2@C hybrid nanostructure derived from a metal-organic framework with graphene oxide for photocatalytic synthesis of N-substituted derivatives. J. Mater. Chem. A 2021, 9, 9018–9027.

    CAS  Google Scholar 

  86. Xiong, D. K.; Gu, M. L.; Chen, C. X.; Lu, C.; Yi, F. Y.; Ma, X. H. Rational design of bimetallic metal-organic framework composites and their derived sulfides with superior electrochemical performance to remarkably boost oxygen evolution and supercapacitors. Chem. Eng. J. 2021, 404, 127111.

    CAS  Google Scholar 

  87. Li, X.; Wang, B. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-5616-z.

  88. Xu, H.; Hu, D.; Lin, L.; Zhang, M.; Li, X.; Zeng, Y. J.; Amer, M.; Luo, W. H.; Yan, K. MOF-derived bimetallic NiCo nanoalloys for the hydrogenation of biomass-derived levulinic acid to γ-valerolactone. AIChE J. 2023, 69, e17973.

    CAS  Google Scholar 

  89. Shin, S.; Yoon, Y.; Shin, M. W. Co/Zn-based bimetallic MOF-derived hierarchical porous Co/C composite as cathode material for high-performance lithium-air batteries. Int. J. Energy Res. 2022, 46, 9900–9910.

    CAS  Google Scholar 

  90. Li, X.; Zhang, Y. Z.; Cheng, Y.; Chen, X. J.; Tan, W. H. MOF-derived porous hierarchical ZnCo2O4 microflowers for enhanced performance gas sensor. Ceram. Int. 2021, 47, 9214–9224.

    CAS  Google Scholar 

  91. Wu, R. B.; Qian, X. K.; Zhou, K.; Wei, J.; Lou, J.; Ajayan, P. M. Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 2014, 8, 6297–6303.

    CAS  Google Scholar 

  92. Li, J. F.; Wang, J. Z.; Wexler, D.; Shi, D. Q.; Liang, J. W.; Liu, H. K.; Xiong, S. L.; Qian, Y. T. Simple synthesis of yolk–shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J. Mater. Chem. A 2013, 1, 15292–15299.

    CAS  Google Scholar 

  93. Acharya, D.; Pathak, I.; Dahal, B.; Lohani, P. C.; Bhattarai, R. M.; Muthurasu, A.; Kim, T.; Ko, T. H.; Chhetri, K.; Kim, H. Y. Immoderate nanoarchitectures of bimetallic MOF derived Ni-Fe-O/NPC on porous carbon nanofibers as freestanding electrode for asymmetric supercapacitors. Carbon 2023, 201, 12–23.

    CAS  Google Scholar 

  94. Xiao, S. N.; Pan, D. L.; Liang, R.; Dai, W. R.; Zhang, Q. T.; Zhang, G. Q.; Su, C. L.; Li, H. X.; Chen, W. Bimetal MOF derived mesocrystal ZnCo2O4 on rGO with high performance in visible-light photocatalytic NO oxidization. Appl. Catal. B Environ. 2018, 236, 304–313.

    CAS  Google Scholar 

  95. Zurrer, T.; Wong, K.; Horlyck, J.; Lovell, E. C.; Wright, J.; Bedford, N. M.; Han, Z. J.; Liang, K.; Scott, J.; Amal, R. Mixed-metal MOF-74 templated catalysts for efficient carbon dioxide capture and methanation. Adv. Funct Mater. 2021, 31, 2007624.

    CAS  Google Scholar 

  96. Wang, Q.; Lu, J. H.; Jiang, Y.; Yang, S. R.; Yang, Y.; Wang, Z. H. FeCo bimetallic metal organic framework nanosheets as peroxymonosulfate activator for selective oxidation of organic pollutants. Chem. Eng. J. 2022, 443, 136483.

    CAS  Google Scholar 

  97. Huang, K.; Yu, S. B.; Li, X. X.; Cai, Z. Y. One-pot synthesis of bimetal MOFs as highly efficient catalysts for selective oxidation of styrene. J. Chem. Sci. 2020, 132, 139.

    CAS  Google Scholar 

  98. Fu, Y. H.; Xu, L.; Shen, H. M.; Yang, H.; Zhang, F. M.; Zhu, W. D.; Fan, M. H. Tunable catalytic properties of multi-metal-organic frameworks for aerobic styrene oxidation. Chem. Eng. J. 2016, 299, 135–141.

    CAS  Google Scholar 

  99. Liu, H. L.; Liu, W.; Xue, G. X.; Tan, T.; Yang, C. Y.; An, P. F.; Chen, W. X.; Zhao, W. S.; Fan, T.; Cui, C. Q. et al. Modulating charges of dual sites in multivariate metal-organic frameworks for boosting selective aerobic epoxidation of alkenes. J. Am. Chem. Soc. 2023, 145, 11085–11096.

    CAS  Google Scholar 

  100. Li, H. X.; Yang, Z. X.; Lu, S.; Su, L. Y.; Wang, C. H.; Huang, J. G.; Zhou, J.; Tang, J. H.; Huang, M. Z. Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism. Chemosphere 2021, 273, 129643.

    CAS  Google Scholar 

  101. Hu, Y. J.; Zhang, J.; Huo, H.; Wang, Z.; Xu, X. Z.; Yang, Y. L.; Lin, K. F.; Fan, R. Q. One-pot synthesis of bimetallic metal-organic frameworks (MOFs) as acid-base bifunctional catalysts for tandem reaction. Catal. Sci. Technol. 2020, 10, 315–322.

    CAS  Google Scholar 

  102. Mitchell, L.; Williamson, P.; Ehrlichová, B.; Anderson, A. E.; Seymour, V. R.; Ashbrook, S. E.; Acerbi, N.; Daniels, L. M.; Walton, R. I.; Clarke, M. L. et al. Mixed-metal MIL-100(Sc, M) (M = Al, Cr, Fe) for Lewis acid catalysis and tandem C–C bond formation and alcohol oxidation. Chem.—Eur. J. 2014, 20, 17185–17197.

    CAS  Google Scholar 

  103. Shi, Z. L.; Niu, G. Q.; Han, Q. X.; Shi, X. Y.; Li, M. X. A molybdate-incorporated cooperative catalyst: High efficiency in the assisted tandem catalytic synthesis of cyclic carbonates from CO2 and olefins. Mol. Catal. 2018, 461, 10–18.

    CAS  Google Scholar 

  104. Zhou, M. H.; Xue, Y. Q.; Ge, F.; Li, J.; Xia, H. H.; Xu, J. M.; Zhao, J.; Chen, C. Z.; Jiang, J. C. MOF-derived NiM@C catalysts (M = Co, Mo, La) for in-situ hydrogenation/hydrodeoxygenation of lignin-derived phenols to cycloalkanes/cyclohexanol. Fuel 2022, 329, 125446.

    CAS  Google Scholar 

  105. Huang, L.; Hao, F.; Lv, Y.; Liu, Y.; Liu, P. L.; Xiong, W.; Luo, H. A. MOF-derived well-structured bimetallic catalyst for highly selective conversion of furfural. Fuel 2021, 289, 119910.

    CAS  Google Scholar 

  106. Cui, W. G.; Li, Y. T.; Zhang, H. B.; Wei, Z. C.; Gao, B. H.; Dai, J. J.; Hu, T. L. In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas. Appl. Catal. B Environ. 2020, 278, 119262.

    CAS  Google Scholar 

  107. Shen, Y.; Bao, L. W.; Sun, F. Z.; Hu, T. L. A novel Cu-nanowire@Quasi-MOF via mild pyrolysis of a bimetal-MOF for the selective oxidation of benzyl alcohol in air. Mater. Chem. Front. 2019, 3, 2363–2373.

    CAS  Google Scholar 

  108. Wang, Q. Y.; Li, Z. M.; Bañares, M. A.; Weng, L. T.; Gu, Q. F.; Price, J.; Han, W.; Yeung, K. L. A novel approach to highperformance aliovalent-substituted catalysts—2D bimetallic MOF-derived CeCuOx microsheets. Small 2019, 15, 1903525.

    CAS  Google Scholar 

  109. Iqbal, B.; Laybourn, A.; Ul-Hamid, A.; Zaheer, M. Size-controlled synthesis of spinel nickel ferrite nanorods by thermal decomposition of a bimetallic Fe/Ni-MOF. Ceram. Int. 2021, 47, 12433–12441.

    CAS  Google Scholar 

  110. Zhang, X. P.; Han, X. K.; Gao, C.; Wang, X. X.; Wei, Y. Y.; Zhang, N.; Bao, J. J.; Xu, N.; He, G. H. In-situ growth of Co/Zn bimetallic MOF on GO surface to prepare GO supporting Co@C single-atom catalyst for Hg0 oxidation. Fuel 2023, 333, 126135.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Key Research and Development Program of China (No. 2021YFA1500403), Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), the National Natural Science Foundation of China (Nos. 22173024 and 21722102), and Youth Innovation Promotion Association CAS (G.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinglong Wang or Guodong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Lin, T., Wang, K. et al. Recent advances in bimetallic metal-organic frameworks and their derivatives for thermal catalysis. Nano Res. 16, 12919–12935 (2023). https://doi.org/10.1007/s12274-023-5935-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5935-0

Keywords

Navigation