Skip to main content
Log in

The modification toward excited-state dynamics and catalytic activity by isomeric Au44 clusters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The structure determination of metal nanoclusters protected by ligands is critical in understanding their physical and chemical properties, yet it remains elusive how the metal core and ligand of metal clusters cooperatively contribute to the observed performances. Here, with the successful synthesis of Au44TBPA22Cl2 cluster (TBPA = 4-tert-butylphenylacetylene), the structural isomer of previously reported Au44L28 clusters (L denoted as ligand) is filled, thereby providing an opportunity to explore the property evolution rules imparted by different metal core structures or different surface ligands. Time-resolved transient absorption spectroscopy reveals that the difference in the core structure between Au44TBPA22Cl2 and Au44L28 can bring nearly 360 times variation of excited-state lifetime, while only 3–24 times differences in excited-state lifetimes of the three Au44L28 nanoclusters with identical metal core but different ligands are observed, which is due to much stronger impact of the metal core than the surface ligands in the electronic energy bands of the clusters. In addition, the Au44 clusters protected by alkyne ligands are shown to be highly effective toward the electrochemical oxidation of ethanol, compared to the Au44 clusters capped by thiolates, which is ascribed to smaller charge transfer impedance of the former clusters. We anticipate that the study will enhance the process in controlling the nanomaterial properties by precisely tailoring metal core or surface patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

    CAS  Google Scholar 

  2. Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

    Google Scholar 

  3. Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.

    CAS  Google Scholar 

  4. Guan, Z. J.; Li, J. J.; Hu, F.; Wang, Q. M. Structural engineering toward gold nanocluster catalysis. Angew. Chem., Int. Ed. 20212, 61, e202209725.

    CAS  Google Scholar 

  5. Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

    CAS  Google Scholar 

  6. Zhang, Y. F.; Zhang, J. J.; Li, Z. W.; Qin, Z. X.; Sharma, S.; Li, G. Atomically precise copper dopants in metal clusters boost up stability, fluorescence, and photocatalytic activity. Commun. Chem. 2023, 6, 24.

    CAS  Google Scholar 

  7. Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Agatom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.

    CAS  Google Scholar 

  8. Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.

    CAS  Google Scholar 

  9. Nakashima, T.; Tanibe, R.; Yoshida, H.; Ehara, M.; Kuzuhara, M.; Kawai, T. Self-regulated pathway-dependent chirality control of silver nanoclusters. Angew. Chem., Int. Ed. 2022, 61, e202208273.

    CAS  Google Scholar 

  10. Huang, J. H.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Spontaneous resolution of chiral multi-thiolate-protected Ag30 nanoclusters. ACS Cent. Sci. 2020, 6, 1971–1976.

    CAS  Google Scholar 

  11. Sun, Y. N.; Liu, X.; Xiao, K.; Zhu, Y.; Chen, M. Y. Active-site tailoring of gold cluster catalysts for electrochemical CO2 reduction. ACS Catal. 2021, 11, 11551–11560.

    CAS  Google Scholar 

  12. Seong, H.; Efremov, V.; Park, G.; Kim, H.; Yoo, J. S.; Lee, D. Atomically precise gold nanoclusters as model catalysts for identifying active sites for electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 14563–14570.

    CAS  Google Scholar 

  13. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 75, 6888–6923.

    Google Scholar 

  14. Zhou, M.; Zeng, C. J.; Chen, Y. X.; Zhao, S.; Sfeir, M. Y.; Zhu, M. Z.; Jin, R. C. Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat. Commun. 2016, 7, 13240.

    CAS  Google Scholar 

  15. Zhang, Y. Y.; Tang, A. C.; Cai, X.; Xu, J. Y.; Liu, X.; Zhu, Y. Manipulating the organic-inorganic interface of atomically precise Au36(SR)24 catalysts for CO oxidation. Chem. Commun. 2022, 58, 3003–3006.

    CAS  Google Scholar 

  16. Liu, J. W.; Feng, L.; Su, H. F.; Wang, Z.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Anisotropic assembly of Ag52 and Ag76 nanoclusters. J. Am. Chem. Soc. 2018, 140, 1600–1603.

    CAS  Google Scholar 

  17. Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy clusters: Precise synthesis and mixing effects. Acc. Chem. Res. 2018, 51, 3114–3124.

    CAS  Google Scholar 

  18. Guan, Z. J.; Zeng, J. L.; Yuan, S. F.; Hu, F.; Lin, Y. M.; Wang, Q. M. Au57Ag53(C=CPh)40Br12: A large nanocluster with C1 symmetry. Angew. Chem., Int. Ed. 2018, 57, 5703–5707.

    CAS  Google Scholar 

  19. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    CAS  Google Scholar 

  20. Zheng, Y. K.; Wu, J. B.; Jiang, H.; Wang, X. M. Gold nanoclusters for theranostic applications. Coordin. Chem. Rev. 2021, 431, 213689.

    CAS  Google Scholar 

  21. Ma, X. S.; Tang, Y.; Ma, G. Y.; Qin, L. B.; Tang, Z. H. Controllable synthesis and formation mechanism study of homoleptic alkynyl-protected Au nanoclusters: Recent advances, grand challenges, and great opportunities. Nanoscale 2021, 13, 602–614.

    CAS  Google Scholar 

  22. Han, S.; Zhang, Z. C.; Li, S. P.; Qi, L. M.; Xu, G. B. Chemiluminescence and electrochemiluminescence applications of metal nanoclusters. Sci. China Chem. 2016, 59, 794–801.

    CAS  Google Scholar 

  23. Liu, X.; Xu, W. W.; Huang, X. Y.; Wang, E. D.; Cai, X.; Zhao, Y.; Li, J.; Xiao, M.; Zhang, C. F.; Gao, Y. et al. De novo design of Au36(SR)24 nanoclusters. Nat. Commun. 2020, 11, 3349.

    CAS  Google Scholar 

  24. Higaki, T.; Liu, C.; Zeng, C. J.; Jin, R. X.; Chen, Y. X.; Rosi, N. L.; Jin, R. C. Controlling the atomic structure of Au30 nanoclusters by a ligand-based strategy. Angew. Chem., Int. Ed. 2016, 55, 6694–6697.

    CAS  Google Scholar 

  25. Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501–507.

    CAS  Google Scholar 

  26. Zhang, S. S.; Liu, R. C.; Zhang, X. C.; Feng, L.; Xue, Q. W.; Gao, Z. Y.; Tung, C. H.; Sun, D. Core engineering of paired core-shell silver nanoclusters. Sci. China Chem. 2021, 64, 2118–2124.

    CAS  Google Scholar 

  27. Li, Y. W.; Chen, Y. X.; House, S. D.; Zhao, S.; Wahab, Z.; Yang, J. C.; Jin, R. C. Interface engineering of gold nanoclusters for CO oxidation catalysis. ACS Appl. Mater. Interfaces 2018, 10, 29425–29434.

    CAS  Google Scholar 

  28. Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 2017, 3, e1701823.

    Google Scholar 

  29. Wang, Y.; Wan, X. K.; Ren, L. T.; Su, H. F.; Li, G.; Malola, S.; Lin, S. C.; Tang, Z. C.; Häkkinen, H.; Teo, B. K. et al. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278–3281.

    CAS  Google Scholar 

  30. Zeng, C. J.; Chen, Y. X.; Iida, K.; Nobusada, K.; Kirschbaum, K.; Lambright, K. J.; Jin, R. C. Gold quantum boxes: On the periodicities and the quantum confinement in the Au28, Au36, Au44, and Au52 magic series. J. Am. Chem. Soc. 2016, 138, 3950–3953.

    CAS  Google Scholar 

  31. Liu, X.; Yao, G.; Cheng, X. L.; Xu, J. Y.; Cai, X.; Hu, W. G.; Xu, W. W.; Zhang, C. F.; Zhu, Y. Cd-driven surface reconstruction and photodynamics in gold nanoclusters. Chem. Sci. 2021, 12, 3290–3294.

    CAS  Google Scholar 

  32. Tang, S. S.; Xu, J. Y.; Liu, X.; Zhu, Y. Ag doped Au44 nanoclusters for electrocatalytic conversion of CO2 to CO. Chem. Eur. J. 2022, 28, e202201262.

    CAS  Google Scholar 

  33. Zhou, M.; Higaki, T.; Hu, G. X.; Sfeir, M. Y.; Chen, Y. X.; Jiang, D. E.; Jin, R. C. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 2019, 364, 279–282.

    CAS  Google Scholar 

  34. Zhou, M.; Higaki, T.; Li, Y. W.; Zeng, C. J.; Li, Q.; Sfeir, M. Y.; Jin, R. C. Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 2019, 141, 19754–19764.

    CAS  Google Scholar 

  35. Kwak, K.; Thanthirige, V. D.; Pyo, K.; Lee, D.; Ramakrishna, G. Energy gap law for exciton dynamics in gold cluster molecules. J. Phys. Chem. Lett. 2017, 8, 4898–4905.

    CAS  Google Scholar 

  36. Bai, S. X.; Xu, Y.; Cao, K. L.; Huang, X. Q. Selective ethanol oxidation reaction at the Rh–SnO2 interface. Adv. Mater. 2021, 33, 2005767.

    CAS  Google Scholar 

  37. Chen, D. P.; Yuan, L.; Li, M. J.; Han, W. J.; Liu, X. D.; Liu, X. C.; Wang, C. Y. Pd monolayer on the 3D-hollow-porous Au microsphere as an advanced electrocatalyst for the ethanol oxidation reaction. ACS Appl. Energy Mater. 2022, 5, 5087–5098.

    CAS  Google Scholar 

  38. Zheng, J. H.; Li, G.; Zhang, J. M.; Cheng, N. Y.; Ji, L. F.; Yang, J.; Zhang, J. L.; Zhang, B. W.; Jiang, Y. X.; Sun, S. G. General strategy for evaluating the d-band center shift and ethanol oxidation reaction pathway towards Pt-based electrocatalysts. Sci. China Chem. 2023, 66, 279–288.

    CAS  Google Scholar 

  39. Behravesh, E.; Melander, M. M.; Wärnå, J.; Salmi, T.; Honkala, K.; Murzin, D. Y. Oxidative dehydrogenation of ethanol on gold: Combination of kinetic experiments and computation approach to unravel the reaction mechanism. J. Catal. 2021, 394, 193–205.

    CAS  Google Scholar 

  40. Zhang, Y. Y.; Wang, J. G.; Yu, X. F.; Baer, D. R.; Zhao, Y.; Mao, L. Q.; Wang, F. Y.; Zhu, Z. H. Potential-dynamic surface chemistry controls the electrocatalytic processes of ethanol oxidation on gold surfaces. ACS Energy Lett. 2019, 4, 215–221.

    CAS  Google Scholar 

  41. Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

    CAS  Google Scholar 

  42. Tang, Q.; Jiang, D. E. Insights into the PhC≡C/Au interface. J. Phys. Chem. C 2015, 119, 10804–10810.

    CAS  Google Scholar 

  43. Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 22125202, 22273095, and 22101128), Programs for high-level entrepreneurial and innovative talents introduction of Jiangsu Province, the Fundamental Research Funds for the Central Universities, Chinese Academy of Sciences (No. YSBR-007), and China Postdoctoral Science Foundation (No. 2022M721551).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Zhou, Wen Wu Xu or Yan Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T., Kong, J., Tang, S. et al. The modification toward excited-state dynamics and catalytic activity by isomeric Au44 clusters. Nano Res. 16, 11383–11388 (2023). https://doi.org/10.1007/s12274-023-5862-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5862-0

Keywords

Navigation