Skip to main content
Log in

Lanthanide-based microlasers: Synthesis, structures, and biomedical applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The large size of lasers limits their applications in confined spaces, such as in biosensing and in vivo brain tissue imaging. In this regard, micron-sized lasers have been developed. They exhibit great potential for biological detecting, remote sensing, and depth tracking due to their small sizes, sensitive properties of their spectral fingerprints, and flexible positional modulation in the microenvironment. Lanthanide-based luminescent materials that possess long excited-state lifetime, narrow emission bandwidth, and upconversion behaviors are promising as gain mediums for novel microlasers. In addition, lanthanide-based microlasers could be generated under natural ambient conditions with pumped or continuous light sources, which significantly promotes the practical applications of microlasers. Recent progress in the design, synthesis, and biomedical applications of lanthanide-based microlasers has been outlined in this review. Lanthanide ions doped and upconverted lanthanide-based microlasers are highlighted, which exhibit advantageous structures, miniaturized dimensions, and high lasing performance. The applications of lanthanide-based microlasers are further discussed, the upconverted microlasers show great advantages for biological applications owing to their tunable excitation and emission characteristics and excellent environmental stability. Moreover, perspectives and challenges in the field of lanthanide-based microlasers are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miao, P.; Zhang, Z. F.; Sun, J. B.; Walasik, W.; Longhi, S.; Litchinitser, N. M.; Feng, L. Orbital angular momentum microlaser. Science 2016, 353, 464–467.

    Article  CAS  Google Scholar 

  2. Zhang, P. J.; Ji, Q. X.; Cao, Q. T.; Wang, H. M.; Liu, W. J.; Gong, Q. H.; Xiao, Y. F. Single-mode characteristic of a supermode microcavity Raman laser. Proc. Natl. Acad. Sci. USA 2021, 118, e2101605118.

    Article  CAS  Google Scholar 

  3. Wang, C. L.; Gong, C. Y.; Zhang, Y. F.; Qiao, Z.; Yuan, Z. Y.; Gong, Y.; Chang, G. E.; Tu, W. C.; Chen, Y. C. Programmable rainbow-colored optofluidic fiber laser encoded with topologically structured chiral droplets. ACS Nano 2021, 15, 11126–11136.

    Article  CAS  Google Scholar 

  4. Papič, M.; Mur, U.; Zuhail, K. P.; Ravnik, M.; Muševič, I.; Humar, M. Topological liquid crystal superstructures as structured light lasers. Proc. Natl. Acad. Sci. USA 2021, 118, e2110839118.

    Article  Google Scholar 

  5. Zhang, Z. F.; Zhao, H. Q.; Wu, S.; Wu, T. W.; Qiao, X. D.; Gao, Z. H.; Agarwal, R.; Longhi, S.; Litchinitser, N. M.; Ge, L. et al. Spinorbit microlaser emitting in a four-dimensional Hilbert space. Nature 2022, 612, 246–251.

    Article  CAS  Google Scholar 

  6. Duan, R.; Zhang, Z. T.; Xiao, L.; Zhao, X. X.; Thung, Y. T.; Ding, L.; Liu, Z.; Yang, J.; Ta, V. D.; Sun, H. D. Ultralow-threshold and high-quality whispering-gallery-mode lasing from colloidal core/hybrid-shell quantum wells. Adv. Mater. 2022, 34, 2108884.

    Article  CAS  Google Scholar 

  7. Kim, Y.; Assali, S.; Burt, D.; Jung, Y.; Joo, H. J.; Chen, M.; Ikonic, Z.; Moutanabbir, O.; Nam, D. Enhanced GeSn microdisk lasers directly released on Si. Adv. Opt. Mater. 2022, 10, 2101213.

    Article  CAS  Google Scholar 

  8. Li, Q. G.; Rao, H.; Ma, X. Z.; Mei, H. J.; Zhao, Z. T.; Gong, W. P.; Camposeo, A.; Pisignano, D.; Yang, X. G. Unusual red light emission from nonmetallic Cu2Te microdisk for laser and SERS applications. Adv. Opt. Mater. 2022, 10, 2101976.

    Article  CAS  Google Scholar 

  9. Su, J.; Goldberg, A. F. G.; Stoltz, B. M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci. Appl. 2016, 5, e16001.

    Article  CAS  Google Scholar 

  10. Diez, I.; Krysa, A.; Luxmoore, I. J. Inverse design of whispering-gallery nanolasers with tailored beam shape and polarization. ACS Photonics 2023, 10, 968–976.

    CAS  Google Scholar 

  11. Fikouras, A. H.; Schubert, M.; Karl, M.; Kumar, J. D.; Powis, S. J.; Di Falco, A.; Gather, M. C. Non-obstructive intracellular nanolasers. Nat. Commun. 2018, 9, 4817.

    Article  Google Scholar 

  12. Guo, Z. H.; Qin, Y. C.; Chen, P. Z.; Hu, J. L.; Zhou, Y.; Zhao, X. Y.; Liu, Z. R.; Fei, Y. Y.; Jiang, X. S.; Wu, X. Hyperboloid-drum microdisk laser biosensors for ultrasensitive detection of human IgG. Small 2020, 16, 2000239.

    Article  CAS  Google Scholar 

  13. Kim, K. H.; Dannenberg, P. H.; Yan, H.; Cho, S.; Yun, S. H. Compact quantum-dot microbeads with sub-nanometer emission linewidth. Adv. Funct. Mater. 2021, 31, 2103413.

    Article  CAS  Google Scholar 

  14. Yuan, Z. Y.; Tan, X. T.; Gong, X. R.; Gong, C. Y.; Cheng, X.; Feng, S. L.; Fan, X. D.; Chen, Y. C. Bioresponsive microlasers with tunable lasing wavelength. Nanoscale 2021, 13, 1608–1615.

    Article  CAS  Google Scholar 

  15. Wang, Y. P.; Lang, M. C.; Lu, J. S.; Suo, M. Q.; Du, M. C.; Hou, Y. B.; Wang, X. H.; Wang, P. Demonstration of intracellular realtime molecular quantification via FRET-enhanced optical microcavity. Nat. Commun. 2022, 13, 6685.

    Article  CAS  Google Scholar 

  16. Titze, V. M.; Caixeiro, S.; Di Falco, A.; Schubert, M.; Gather, M. C. Red-shifted excitation and two-photon pumping of biointegrated GalnP/AlGalnP quantum well microlasers. ACS Photonics 2022, 9, 952–960.

    Article  CAS  Google Scholar 

  17. Sun, J.; Chen, J. S.; Liu, K.; Zeng, H. B. Mechanically strong proteinaceous fibers: Engineered fabrication by microfluidics. Engineering 2021, 7, 615–623.

    Article  CAS  Google Scholar 

  18. Liu, H. T.; Zhang, H. L.; Dong, L.; Zhang, Y. J.; Pan, C. F. Growth of GaN micro/nanolaser arrays by chemical vapor deposition. Nanotechnology 2016, 27, 355201.

    Article  Google Scholar 

  19. Peng, Y. Y.; Lu, J. F.; Peng, D. F.; Ma, W. D.; Li, F. T.; Chen, Q. S.; Wang, X. D.; Sun, J. L.; Liu, H. T.; Pan, C. F. Dynamically modulated GaN whispering gallery lasing mode for strain sensor. Adv. Funct. Mater. 2019, 29, 1905051.

    Article  CAS  Google Scholar 

  20. Lu, Z. F.; Wang, L. J.; Zhang, Y.; Shu, S. L.; Tian, S. C.; Tong, C. Z.; Hou, G. Y.; Chai, X. L.; Xu, Y. Q.; Ni, H. Q. et al. High-power GaSb-based microstripe broad-area lasers. Appl. Phys. Express 2018, 11, 032702.

    Article  Google Scholar 

  21. Di Stasio, F.; Polovitsyn, A.; Angeloni, I.; Moreels, I.; Krahne, R. Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS “giant-shell” nanocrystals. ACS Photonics 2016, 3, 2083–2088.

    Article  CAS  Google Scholar 

  22. Rong, K. X.; Sun, C. W.; Shi, K. B.; Gong, Q. H.; Chen, J. J. Room-temperature planar lasers based on water-dripping microplates of colloidal quantum dots. ACS Photonics 2017, 4, 1776–1784.

    Article  CAS  Google Scholar 

  23. Wang, Q.; Yan, Y. Z.; Qin, F. F.; Xu, C. X.; Liu, X. L.; Tan, P. H.; Shi, N. N.; Hu, S. P.; Li, L.; Zeng, Y. et al. A novel ultra-thin-walled ZnO microtube cavity supporting multiple optical modes for bluish-violet photoluminescence, low-threshold ultraviolet lasing and microfluidic photodegradation. NPG Asia Mater. 2017, 9, e442.

    Article  CAS  Google Scholar 

  24. Fetisova, M. V.; Kryzhanovskaya, N. V.; Reduto, I. V.; Moiseev, E. I.; Blokhin, S. A.; Kotlyar, K. P.; Scherbak, S. A.; Lipovskii, A. A.; Kornev, A. A.; Bukatin, A. S. et al. Room temperature lasing from microdisk laser in aqueous medium. J. Phys. Conf. Ser. 2018, 1124, 051007.

    Article  Google Scholar 

  25. Humar, M.; Yun, S. H. Intracellular microlasers. Nat. Photonics 2015, 9, 572–576.

    Article  CAS  Google Scholar 

  26. Huang, Q. L.; Xu, H. L.; Li, M. T.; Hou, Z. S.; Lv, C.; Zhan, X. P.; Li, H. L.; Xia, H.; Wang, H. Y.; Sun, H. B. Stretchable PEG-DA hydrogel-based whispering-gallery-mode microlaser with humidity responsiveness. J. Lightwave Technol. 2018, 36, 819–824.

    Article  CAS  Google Scholar 

  27. Fan, Y. Q.; Zhang, C. H.; Du, Y. X.; Qiao, C.; Wang, K.; Hou, Y.; Yao, J. N.; Zhao, Y. S. A universal in situ cross-linking strategy enables orthogonal processing of full-color organic microlaser arrays. Adv. Funct. Mater. 2021, 31, 2103031.

    Article  CAS  Google Scholar 

  28. Gong, X. R.; Qiao, Z.; Liao, Y. K.; Zhu, S.; Shi, L.; Kim, M.; Chen, Y. C. Enzyme-programmable microgel lasers for information encoding and anti-counterfeiting. Adv. Mater. 2022, 34, 2107809.

    Article  CAS  Google Scholar 

  29. Liao, Q.; Jin, X.; Zhang, H. H.; Xu, Z. Z.; Yao, J. N.; Fu, H. B. An organic microlaser array based on a lateral microcavity of a single Jaggregation microbelt. Angew. Chem., Int. Ed. 2015, 54, 7037–7041.

    Article  CAS  Google Scholar 

  30. Liu, D.; Wu, X. X.; Gao, C.; Li, C. G.; Zheng, Y. S.; Li, Y.; Xie, Z. Y.; Ji, D. Y.; Liu, X. F.; Zhang, X. T. et al. Integrating unexpected high charge-carrier mobility and low-threshold lasing action in an organic semiconductor. Angew. Chem., Int. Ed. 2022, 61, e202200791.

    Article  CAS  Google Scholar 

  31. Zhou, B. E.; Jiang, M. M.; Dong, H. X.; Zheng, W. H.; Huang, Y. Z.; Han, J. Y.; Pan, A. L.; Zhang, L. High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity. ACS Photonics 2019, 6, 793–801.

    Article  CAS  Google Scholar 

  32. Zhou, B. E.; Zhong, Y. C.; Jiang, M. M.; Zhang, J. H.; Dong, H. X.; Chen, L. Q.; Wu, H.; Xie, W.; Zhang, L. Linearly polarized lasing based on coupled perovskite microspheres. Nanoscale 2020, 12, 5805–5811.

    Article  Google Scholar 

  33. Tian, X. Y.; Wang, L.; Li, W.; Lin, Q. Q.; Cao, Q. Whispering gallery mode lasing from perovskite polygonal microcavities via femtosecond laser direct writing. ACS Appl. Mater. Interfaces 2021, 13, 16952–16958.

    Article  CAS  Google Scholar 

  34. Liu, G. D.; Liu, H.; Wang, J.; Jia, S. T.; Li, G. Z.; Li, Y. F.; Gao, Y. A.; Yang, H.; Wang, S. F.; Gong, Q. H. Single-mode lasing with spontaneous symmetry breaking from a perovskite microdisk dimer. ACS Photonics 2023, 10, 43–48.

    Article  CAS  Google Scholar 

  35. Shang, Q. Y.; Zhang, S.; Liu, Z.; Chen, J.; Yang, P. F.; Li, C.; Li, W.; Zhang, Y. F.; Xiong, Q. H.; Liu, X. F. et al. Surface plasmon enhanced strong exciton-photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett. 2018, 18, 3335–3343.

    Article  CAS  Google Scholar 

  36. Klein-Kedem, N.; Cahen, D.; Hodes, G. Effects of light and electron beam irradiation on halide perovskites and their solar cells. Acc. Chem. Res. 2016, 49, 347–354.

    Article  CAS  Google Scholar 

  37. Levy, E. S.; Tajon, C. A.; Bischof, T. S.; Iafrati, J.; Fernandez-Bravo, A.; Garfield, D. J.; Chamanzar, M.; Maharbiz, M. M.; Sohal, V. S.; Schuck, P. J. et al. Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging. ACS Nano 2016, 10, 8423–8433.

    Article  CAS  Google Scholar 

  38. Sun, J.; Zhang, J. R.; Zhao, L.; Wan, S. K.; Wu, B. H.; Ma, C.; Li, J. J.; Wang, F.; Xing, X. W.; Chen, D. et al. Contribution of hydrogen-bond nanoarchitectonics to switchable photothermal-mechanical properties of bioinorganic fibers. CCS Chem. 2023, 5, 1242–1250.

    Article  CAS  Google Scholar 

  39. Li, J. J.; Sun, Y.; Liang, Y. X.; Ma, J.; Li, B.; Ma, C.; Tanzi, R. E.; Zhang, H. J.; Liu, K.; Zhang, C. Extracellular elastin molecule modulates Alzheimer’s Aβ dynamics in vitro and in vivo by affecting microglial activities. CCS Chem. 2021, 3, 1830–1837.

    Article  CAS  Google Scholar 

  40. Xu, Z. P.; Wu, M. R.; Ye, Q.; Chen, D.; Liu, K.; Bai, H. Spinning from nature: Engineered preparation and application of high-performance bio-based fibers. Engineering 2022, 14, 100–112.

    Article  Google Scholar 

  41. Wang, S. D.; Zhang, H. L.; Li, B.; Chen, C. L.; Ren, T. T.; Huang, Y.; Liu, K.; Li, J. J.; Guo, W. Knockdown of a specific circular non-coding RNA significantly suppresses osteosarcoma progression. Engineering 2023, 21, 188–194.

    Article  Google Scholar 

  42. Xu, X.; Lei, P. P.; Dong, L. L.; Liu, X. L.; Su, Y.; Song, S. Y.; Feng, J.; Zhang, H. J. Rational design of Nd3+-sensitized multifunctional nanoparticles with highly dominant red emission. Dalton Trans. 2016, 45, 8440–8446.

    Article  CAS  Google Scholar 

  43. Lei, P. P.; An, R.; Zhai, X. S.; Yao, S.; Dong, L. L.; Xu, X.; Du, K. M.; Zhang, M. L.; Feng, J.; Zhang, H. J. Benefits of surfactant effects on quantum efficiency enhancement and temperature sensing behavior of NaBiF4 upconversion nanoparticles. J. Mater. Chem. C 2017, 5, 9659–9665.

    Article  CAS  Google Scholar 

  44. Du, K. M.; Feng, J.; Gao, X.; Zhang, H. J. Nanocomposites based on lanthanide-doped upconversion nanoparticles: Diverse designs and applications. Light Sci. Appl. 2022, 11, 222.

    Article  CAS  Google Scholar 

  45. Wei, Z.; Liu, Y. W.; Li, B.; Li, J. J.; Lu, S.; Xing, X. W.; Liu, K.; Wang, F.; Zhang, H. J. Rare-earth based materials: An effective toolbox for brain imaging, therapy, monitoring and neuromodulation. Light Sci. Appl. 2022, 11, 175.

    Article  CAS  Google Scholar 

  46. Sun, J.; Li, B.; Wang, F.; Feng, J.; Ma, C.; Liu, K.; Zhang, H. J. Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions. CCS Chem. 2021, 3, 1669–1677.

    Article  CAS  Google Scholar 

  47. Sun, J.; Xiao, L. L.; Li, B.; Zhao, K. L.; Wang, Z. L.; Zhou, Y.; Ma, C.; Li, J. J.; Zhang, H. J.; Herrmann, A. et al. Genetically engineered polypeptide adhesive coacervates for surgical applications. Angew. Chem., Int. Ed. 2021, 60, 23687–23694.

    Article  CAS  Google Scholar 

  48. Su, J. J.; Lu, S.; Wei, Z.; Li, B.; Li, J. J.; Sun, J.; Liu, K.; Zhang, H. J.; Wang, F. Biocompatible inorganic nanoagent for efficient synergistic tumor treatment with augmented antitumor immunity. Small 2022, 18, 2200897.

    Article  CAS  Google Scholar 

  49. Chung, J. W.; Gerelkhuu, Z.; Oh, J. H.; Lee, Y. I. Recent advances in luminescence properties of lanthanide-doped up-conversion nanocrystals and applications for bio-imaging, drug delivery, and optosensing. Appl. Spectrosc. Rev. 2016, 51, 678–705.

    Article  CAS  Google Scholar 

  50. Guo, H. H.; Song, X. R.; Lei, W.; He, C.; You, W. W.; Lin, Q. Z.; Zhou, S. Y.; Chen, X. Y.; Chen, Z. Direct detection of circulating tumor cells in whole blood using time-resolved luminescent lanthanide nanoprobes. Angew. Chem., Int. Ed. 2019, 58, 12195–12199.

    Article  CAS  Google Scholar 

  51. Du, K. M.; Zhang, M. L.; Li, Y.; Li, H. W.; Liu, K.; Li, C. Y.; Feng, J.; Zhang, H. J. Embellishment of upconversion nanoparticles with ultrasmall perovskite quantum dots for full-color tunable, dualmodal luminescence anticounterfeiting. Adv. Opt. Mater. 2021, 9, 2100814.

    Article  CAS  Google Scholar 

  52. Wang, X. N.; Li, T.; Liang, W. C.; Zhu, C. C.; Guo, L. D. Triple NIR light excited up-conversion luminescence in lanthanide-doped BaTiO3 phosphors for anti-counterfeiting. J. Am. Ceram. Soc. 2021, 104, 5826–5836.

    Article  CAS  Google Scholar 

  53. Xu, J. T.; Gulzar, A.; Yang, P. P.; Bi, H. T.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Xing, B. G.; Jin, D. Y. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coord. Chem. Rev. 2019, 381, 104–134.

    Article  CAS  Google Scholar 

  54. Liu, Y. W.; Zhao, K. L.; Ren, Y. B.; Wan, S. K.; Yang, C. J.; Li, J. J.; Wang, F.; Chen, C. Y.; Su, J. J.; Chen, D. et al. Highly plasticized lanthanide luminescence for information storage and encryption applications. Adv. Sci. (Weinh.) 2022, 9, 2105108.

    CAS  Google Scholar 

  55. Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 2018, 13, 941–946.

    Article  CAS  Google Scholar 

  56. Zhang, H. X.; Fan, Y.; Pei, P.; Sun, C. X.; Lu, L. F.; Zhang, F. Tm3+-sensitized NIR-II fluorescent nanocrystals for in vivo information storage and decoding. Angew. Chem., Int. Ed. 2019, 58, 10153–10157.

    Article  CAS  Google Scholar 

  57. Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 2019, 17, 1322–1331.

    Article  Google Scholar 

  58. Zhu, H.; Chen, X.; Jin, L. M.; Wang, Q. J.; Wang, F.; Yu, S. F. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals. ACS Nano 2013, 7, 11420–11426.

    Article  CAS  Google Scholar 

  59. Jin, L. M.; Yang, X. L.; Yu, S.; Zheng, P. R.; Chen, X.; Xiao, S. M.; Song, Q. H. Ultralow-threshold wideband-tunable single-mode ultraviolet lasing from lanthanide-doped upconversion nanomaterials. J. Am. Ceram. Soc. 2022, 105, 5764–5773.

    Article  CAS  Google Scholar 

  60. Wang, T.; Yu, H.; Siu, C. K.; Qiu, J. B.; Xu, X. H.; Yu, S. F. White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods. ACS Photonics 2017, 4, 1539–1543.

    Article  CAS  Google Scholar 

  61. Wang, Z.; Fang, Z. W.; Liu, Z. X.; Chu, W.; Zhou, Y.; Zhang, J. H.; Wu, R. B.; Wang, M.; Lu, T.; Cheng, Y. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. Opt. Lett. 2021, 46, 380–383.

    Article  Google Scholar 

  62. Guo, Y. H.; Li, Z. Y.; An, N.; Guo, Y. Z.; Wang, Y. C.; Yuan, Y. S.; Zhang, H.; Tan, T.; Wu, C. H.; Peng, B. et al. A monolithic graphene-functionalized microlaser for multispecies gas detection. Adv. Mater. 2022, 34, 2207777.

    Article  CAS  Google Scholar 

  63. Fernandez-Bravo, A.; Wang, D. Q.; Barnard, E. S.; Teitelboim, A.; Tajon, C.; Guan, J.; Schatz, G. C.; Cohen, B. E.; Chan, E. M.; Schuck, P. J. et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat. Mater. 2019, 18, 1172–1176.

    Article  CAS  Google Scholar 

  64. Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for superresolution nanoscopy. Nature 2017, 543, 229–233.

    Article  CAS  Google Scholar 

  65. Ding, X.; Liu, J. H.; Liu, D. P.; Li, J. Q.; Wang, F.; Li, L. J.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite: A single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. Nano Res. 2017, 10, 3434–3446.

    Article  CAS  Google Scholar 

  66. All, A. H.; Zeng, X.; Teh, D. B. L.; Yi, Z. G.; Prasad, A.; Ishizuka, T.; Thakor, N.; Hiromu, Y.; Liu, X. G. Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation. Adv. Mater. 2019, 31, 1803474.

    Article  CAS  Google Scholar 

  67. Zhang, Y. X.; Huang, P.; Wang, D.; Chen, J. C.; Liu, W. Z.; Hu, P.; Huang, M. D.; Chen, X. Y.; Chen, Z. Near-infrared-triggered antibacterial and antifungal photodynamic therapy based on lanthanide-doped upconversion nanoparticles. Nanoscale 2018, 10, 15485–15495.

    Article  CAS  Google Scholar 

  68. Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359, 679–684.

    Article  CAS  Google Scholar 

  69. Zhao, X. Y.; He, S. P.; Li, B.; Liu, B.; Shi, Y. J.; Cong, W.; Gao, F.; Li, J. J.; Wang, F.; Liu, K. et al. DUCNP@Mn-MOF/FOE as a highly selective and bioavailable drug delivery system for synergistic combination cancer therapy. Nano Lett. 2023, 23, 863–871.

    Article  CAS  Google Scholar 

  70. Gao, X.; Feng, J.; Song, S. Y.; Liu, K.; Du, K. M.; Zhou, Y. F.; Lv, K. H.; Zhang, H. J. Tumor-targeted biocatalyst with self-accelerated cascade reactions for enhanced synergistic starvation and photodynamic therapy. Nano Today 2022, 43, 101433.

    Article  CAS  Google Scholar 

  71. Liu, B.; Gu, X. Q.; Sun, Q. N.; Jiang, S. J.; Sun, J.; Liu, K.; Wang, F.; Wei, Y. Injectable in situ induced robust hydrogel for photothermal therapy and bone fracture repair. Adv. Funct. Mater. 2021, 31, 2010779.

    Article  CAS  Google Scholar 

  72. Liu, B.; Sun, J.; Zhu, J. J.; Li, B.; Ma, C.; Gu, X. Q.; Liu, K.; Zhang, H. J.; Wang, F.; Su, J. J. et al. Injectable and NIR-responsive DNA-inorganic hybrid hydrogels with outstanding photothermal therapy. Adv. Mater. 2020, 32, 2004460.

    Article  CAS  Google Scholar 

  73. Shao, B. Q.; Wan, S. K.; Yang, C. J.; Shen, J. L.; Li, Y. W.; You, H. P.; Chen, D.; Fan, C. H.; Liu, K.; Zhang, H. J. Engineered anisotropic fluids of rare-earth nanomaterials. Angew. Chem., Int. Ed. 2020, 59, 18213–18217.

    Article  CAS  Google Scholar 

  74. Zhao, K. L.; Sun, J.; Wang, F.; Song, A. Y.; Liu, K.; Zhang, H. J. Lanthanide-based photothermal materials: Fabrication and biomedical applications. ACS Appl. Bio Mater. 2020, 3, 3975–3986.

    Article  CAS  Google Scholar 

  75. Wen, S. H.; Zhou, J. J.; Schuck, P. J.; Suh, Y. D.; Schmidt, T. W.; Jin, D. Y. Future and challenges for hybrid upconversion nanosystems. Nat. Photonics 2019, 13, 828–838.

    Article  CAS  Google Scholar 

  76. Liu, D. M.; Xu, X. X.; Du, Y.; Qin, X.; Zhang, Y. H.; Ma, C. S.; Wen, S. H.; Ren, W.; Goldys, E. M.; Piper, J. A. et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat. Commun. 2016, 7, 10254.

    Article  CAS  Google Scholar 

  77. Shang, Y. F.; Chen, T.; Ma, T. H.; Hao, S. W.; Lv, W. Q.; Jia, D. C.; Yang, C. H. Advanced lanthanide doped upconversion nanomaterials for lasing emission. J. Rare Earths 2022, 40, 687–695.

    Article  CAS  Google Scholar 

  78. Kippenberg, T. J.; Kalkman, J.; Polman, A.; Vahala, K. J. Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys. Rev. A 2006, 74, 051802.

    Article  Google Scholar 

  79. Polman, A.; Min, B.; Kalkman, J.; Kippenberg, T. J.; Vahala, K. J. Ultralow-threshold erbium-implanted toroidal microlaser on silicon. Appl. Phys. Lett. 2004, 84, 1037–1039.

    Article  CAS  Google Scholar 

  80. Bekker, C. J.; Baker, C. G.; Bowen, W. P. Optically tunable photoluminescence and up-conversion lasing on a chip. Phys. Rev. Appl. 2021, 15, 034022.

    Article  CAS  Google Scholar 

  81. Yang, L.; Carmon, T.; Min, B.; Spillane, S. M.; Vahala, K. J. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process. Appl. Phys. Lett. 2005, 86, 091114.

    Article  Google Scholar 

  82. Hsu, H. S.; Cai, C.; Armani, A. M. Ultra-low-threshold Er:Yb sol–gel microlaser on silicon. Opt. Express 2009, 17, 23265–23271.

    Article  CAS  Google Scholar 

  83. Fan, H. B.; Hua, S. Y.; Jiang, X. S.; Xiao, M. Demonstration of an erbium-doped microsphere laser on a silicon chip. Laser Phys. Lett. 2013, 10, 105809.

    Article  Google Scholar 

  84. Ding, Y.; Fan, H. B.; Zhang, X.; Jiang, X. S.; Xiao, M. Ultralow-threshold neodymium-doped microsphere lasers on a silicon chip. Opt. Commun. 2017, 395, 51–54.

    Article  CAS  Google Scholar 

  85. Zhu, S.; Wang, W. Y.; Jiang, B.; Ren, L. H.; Shi, L.; Zhang, X. L. Flexible manipulation of lasing modes in an erbium-doped microcavity via an add-drop configuration. ACS Photonics 2021, 8, 3069–3077.

    Article  CAS  Google Scholar 

  86. Fernandez-Bravo, A.; Yao, K. Y.; Barnard, E. S.; Borys, N. J.; Levy, E. S.; Tian, B. N.; Tajon, C. A.; Moretti, L.; Altoe, M. V.; Aloni, S. et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol. 2018, 13, 572–577.

    Article  CAS  Google Scholar 

  87. Liu, Y. W.; Teitelboim, A.; Fernandez-Bravo, A.; Yao, K. Y.; Altoe, M. V. P.; Aloni, S.; Zhang, C. H.; Cohen, B. E.; Schuck, P. J.; Chan, E. M. Controlled assembly of upconverting nanoparticles for low-threshold microlasers and their imaging in scattering media. ACS Nano 2020, 14, 1508–1519.

    Article  CAS  Google Scholar 

  88. Shang, Y. F.; Zhou, J. J.; Cai, Y. J.; Wang, F.; Fernandez-Bravo, A.; Yang, C. H.; Jiang, L.; Jin, D. Y. Low threshold lasing emissions from a single upconversion nanocrystal. Nat. Commun. 2020, 11, 6156.

    Article  CAS  Google Scholar 

  89. Haider, G.; Lin, H. I.; Yadav, K.; Shen, K. C.; Liao, Y. M.; Hu, H. W.; Roy, P. K.; Bera, K. P.; Lin, K. H.; Lee, H. M. et al. A highly-efficient single segment white random laser. ACS Nano 2018, 12, 11847–11859.

    Article  CAS  Google Scholar 

  90. Zhu, S.; Shi, L.; Xiao, B. W.; Zhang, X. L.; Fan, X. D. All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity. ACS Photonics 2018, 5, 3794–3800.

    Article  CAS  Google Scholar 

  91. Ouyang, T. C.; Kang, S. L.; Zhang, Z. S.; Yang, D. D.; Huang, X. J.; Pan, Q. W.; Gan, J. L.; Qiu, J. R.; Dong, G. P. Microlaser output from rare-earth ion-doped nanocrystal-in-glass microcavities. Adv. Opt. Mater. 2019, 7, 1900197.

    Article  CAS  Google Scholar 

  92. Ngara, Z. S.; Okada, D.; Oki, O.; Yamamoto, Y. Energy transferassisted whispering gallery mode lasing in conjugated polymer/europium hybrid microsphere resonators. Chem. Asian J. 2019, 14, 1637–1641.

    Article  CAS  Google Scholar 

  93. Yang, Y.; Lei, F. C.; Kasumie, S.; Xu, L. H.; Ward, J. M.; Yang, L.; Nic Chormaic, S. Tunable erbium-doped microbubble laser fabricated by sol–gel coating. Opt. Express 2017, 25, 1308–1313.

    Article  CAS  Google Scholar 

  94. Ward, J. M.; Yang, Y.; Nic Chormaic, S. Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications. Sci. Rep. 2016, 6, 25152.

    Article  CAS  Google Scholar 

  95. Elliott, G. R.; Murugan, G. S.; Wilkinson, J. S.; Zervas, M. N.; Hewak, D. W. Chalcogenide glass microsphere laser. Opt. Express 2010, 18, 26720–26727.

    Article  CAS  Google Scholar 

  96. Deng, Y.; Jain, R. K.; Hossein-Zadeh, M. Demonstration of a cw room temperature mid-IR microlaser. Opt. Lett. 2014, 39, 4458–4461.

    Article  CAS  Google Scholar 

  97. Wang, P. F.; Yi, Y. T.; Wang, X.; Li, A. Z.; Jia, S. J.; Fan, Y. X.; Brambilla, G.; Wang, S. B.; Zhao, H. Y. Tm3+-doped fluorotellurite glass microsphere resonator laser at 2.3 µm. Opt. Lett. 2020, 45, 3553–3556.

    Article  CAS  Google Scholar 

  98. Li, A. Z.; Dong, Y. K.; Wang, S. B.; Jia, S. J.; Brambilla, G.; Wang, P. F. Infrared-laser and upconversion luminescence in Ho3+-Yb3+ codoped tellurite glass microsphere. J. Lumin. 2020, 218, 116826.

    Article  CAS  Google Scholar 

  99. Jiang, B.; Zhu, S.; Wang, W. Y.; Li, J.; Dong, C. H.; Shi, L.; Zhang, X. L. Room-temperature continuous-wave upconversion white microlaser using a rare-earth-doped microcavity. ACS Photonics 2022, 9, 2956–2962.

    Article  CAS  Google Scholar 

  100. Jin, L. M.; Liu, Z.; Zhang, Y. Q.; Wu, Y. K.; Liu, Y. L.; Deng, H. C.; Song, Q. H.; Xiao, S. M. Lanthanide-doped nanocrystals in high-Q microtoroids for stable on-chip white-light lasers. Photonics Res. 2022, 10, 1594–1601.

    Article  Google Scholar 

  101. Moon, B. S.; Lee, T. K.; Jeon, W. C.; Kwak, S. K.; Kim, Y. J.; Kim, D. H. Continuous-wave upconversion lasing with a sub-10 Wcm−2 threshold enabled by atomic disorder in the host matrix. Nat. Commun. 2021, 12, 4437.

    Article  CAS  Google Scholar 

  102. Jin, L. M.; Wu, Y. K.; Wang, Y. J.; Liu, S.; Zhang, Y. Q.; Li, Z. Y.; Chen, X.; Zhang, W. F.; Xiao, S. M.; Song, Q. H. Mass-manufactural lanthanide-based ultraviolet B microlasers. Adv. Mater. 2019, 31, 1807079.

    Article  Google Scholar 

  103. Chen, X.; Jin, L. M.; Kong, W.; Sun, T. Y.; Zhang, W. F.; Liu, X. H.; Fan, J.; Yu, S. F.; Wang, F. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nat. Commun. 2016, 7, 10304.

    Article  CAS  Google Scholar 

  104. Sun, T. Y.; Chen, B.; Guo, Y.; Zhu, Q.; Zhao, J. X.; Li, Y. H.; Chen, X.; Wu, Y. K.; Gao, Y. B.; Jin, L. M. et al. Ultralarge anti-Stokes lasing through tandem upconversion. Nat. Commun. 2022, 13, 1032.

    Article  CAS  Google Scholar 

  105. Jin, L. M.; Chen, X.; Wu, Y. K.; Ai, X. Z.; Yang, X. L.; Xiao, S. M.; Song, Q. H. Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator. Nat. Commun. 2022, 13, 1727.

    Article  CAS  Google Scholar 

  106. Du, Y. Y.; Wang, Y. F.; Deng, Z. Q.; Chen, X.; Yang, X. Q.; Sun, T. Y.; Zhang, X.; Zhu, G. Y.; Yu, S. F.; Wang, F. Blue-pumped deep ultraviolet lasing from lanthanide-doped Lu6O5F8 upconversion nanocrystals. Adv. Opt. Mater. 2019, 8, 1900968.

    Article  Google Scholar 

  107. Wang, Y. Y.; Xu, C. X.; Jiang, M. M.; Li, J. T.; Dai, J.; Lu, J. F.; Li, P. L. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect. Nanoscale 2016, 8, 16631–16639.

    Article  CAS  Google Scholar 

  108. Liu, W. L.; Li, M.; Guzzon, R. S.; Norberg, E. J.; Parker, J. S.; Lu, M. Z.; Coldren, L. A.; Yao, J. P. An integrated parity-time symmetric wavelength-tunable single-mode microring laser. Nat. Commun. 2017, 8, 15389.

    Article  CAS  Google Scholar 

  109. Yang, X. F.; Lyu, Z. Y.; Dong, H.; Sun, L. D.; Yan, C. H. Lanthanide upconverted microlasing: Microlasing spanning full visible spectrum to near-infrared under low power, CW pumping. Small 2021, 17, 2103140.

    Article  CAS  Google Scholar 

  110. Li, K. R.; Stockman, M. I.; Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 2003, 91, 227402.

    Article  Google Scholar 

  111. Chen, X.; Jin, L. M.; Sun, T. Y.; Kong, W.; Yu, S. F.; Wang, F. Energy migration upconversion in Ce(III)-doped heterogeneous core–shell–shell nanoparticles. Small 2017, 13, 1701479.

    Article  Google Scholar 

  112. Wan, S. K.; Cheng, W. H.; Li, J. J.; Wang, F.; Xing, X. W.; Sun, J.; Zhang, H. J.; Liu, K. Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Res. 2022, 15, 9192–9198.

    Article  CAS  Google Scholar 

  113. Li, Y. X.; Sun, J.; Li, J. J.; Liu, K.; Zhang, H. J. Engineered protein nanodrug as an emerging therapeutic tool. Nano Res. 2022, 15, 5161–5172.

    Article  Google Scholar 

  114. Zhou, W.; Zhang, C. H.; Ren, A.; Dong, H. Y.; Yao, J. N.; Zhao, Y. S. Responsive liquid-crystal microlaser arrays with tactile perception. Adv. Opt. Mater., in press, https://doi.org/10.1002/adom.202202879.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22020102003, 22207104, and 22125701), National Key R&D Program of China (Nos. 2022YFF071000 and 2021YFF0701800), Natural Science Foundation of Jilin Province (No. 20230101102JC), China Postdoctoral Science Foundation (Nos. 2020M681055 and 2022T150634), and Young Elite Scientists Sponsorship Program by CAST (Nos. 2021-2023QNRC and YESS20210067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yawei Liu or Kai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Liu, Y., Liu, K. et al. Lanthanide-based microlasers: Synthesis, structures, and biomedical applications. Nano Res. 17, 97–111 (2024). https://doi.org/10.1007/s12274-023-5848-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5848-y

Keywords

Navigation