Skip to main content
Log in

Luminescence modulation of ultrasmall gold clusters by aromatic ligands

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Luminescence is one of the most important properties for metal nanoclusters; however, clearly revealing its origin remains challenging. The different luminescence properties of the two prototypical 8e nanoclusters Au11 and Au13 remain elusive—Au11 is always nonluminescent, whereas Au13 is luminescent. In this work, by using a designed unique aromatic ligand (quinoline-2-thiol), we obtained new atomically precise phosphine-thiolate-protected neutral Au11-SH and cationic Au13-SH. In comparison with the classic phosphine-halide-protected Au11-Cl and Au13-Cl, the Cl-to-thiol alteration triggered room-temperature luminescence of the Au11 core and dramatically modulated that of the Au13 core. Ultrafast ultraviolet/infrared (UV/IR) spectroscopy, which is sensitive to organic aromatic groups, together with ultrafast transient absorption (TA) spectroscopy unprecedently revealed a relaxation process from the ligand to core state affecting the dynamics in excited states and some critical intermediate states favouring efficient room-temperature emission of these nanoclusters. This work provides some new insights into the origin of photoluminescence of metal nanoclusters and opens an avenue to modulate the dynamics of their excited states using aromatic ligands, which would have direct applications in lighting, light harvesting, and photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

    CAS  Google Scholar 

  2. Cao, Y. T.; Chen, T. K.; Yao, Q. F.; Xie, J. P. Diversification of metallic molecules through derivatization chemistry of Au25 nanoclusters. Acc. Chem. Res. 2021, 54, 4142–4153.

    CAS  Google Scholar 

  3. Zhou, M.; Higaki, T.; Li, Y. W.; Zeng, C. J.; Li, Q.; Sfeir, M. Y.; Jin, R. C. Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 2019, 141, 19754–19764.

    CAS  Google Scholar 

  4. Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

    CAS  Google Scholar 

  5. Yang, D.; Pei, W.; Zhou, S.; Zhao, J. J.; Ding, W. P.; Zhu, Y. Controllable conversion of CO2 on non-metallic gold clusters. Angew. Chem., Int. Ed. 2020, 59, 1919–1924.

    CAS  Google Scholar 

  6. Song, X. R.; Zhu, W.; Ge, X. G.; Li, R. F.; Li, S. H.; Chen, X.; Song, J. B.; Xie, J. P.; Chen, X. Y.; Yang, H. H. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem., Int. Ed. 2021, 60, 1306–1312.

    CAS  Google Scholar 

  7. Jin, Y.; Zhang, C.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 2021, 50, 2297–2319.

    CAS  Google Scholar 

  8. Luo, X. M.; Gong, C. H.; Pan, F. F.; Si, Y. B.; Yuan, J. W.; Asad, M.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Small symmetry-breaking triggering large chiroptical responses of Ag70 nanoclusters. Nat. Commun. 2022, 13, 1177.

    CAS  Google Scholar 

  9. Yan, J. Z.; Malola, S.; Hu, C. Y.; Peng, J.; Dittrich, B.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells. Nat. Commun. 2018, 9, 3357.

    Google Scholar 

  10. Li, J. J.; Liu, Z. K.; Guan, Z. J.; Han, X. S.; Shi, W. Q.; Wang, Q. M. A 59-electron non-magic-number gold nanocluster Au99(C≡CR)40 showing unexpectedly high stability. J. Am. Chem. Soc. 2022, 144, 690–694.

    CAS  Google Scholar 

  11. Takano, S.; Tsukuda, T. Chemically modified gold/silver superatoms as artificial elements at nanoscale: Design principles and synthesis challenges. J. Am. Chem. Soc. 2021, 143, 1683–1698.

    CAS  Google Scholar 

  12. Weerawardene, K. L. D. M.; Pandeya, P.; Zhou, M.; Chen, Y. X.; Jin, R. C.; Aikens, C. M. Luminescence and electron dynamics in atomically precise nanoclusters with eight superatomic electrons. J. Am. Chem. Soc. 2019, 141, 18715–18726.

    CAS  Google Scholar 

  13. Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

    CAS  Google Scholar 

  14. Li, Q.; Zhou, M.; So, W. Y.; Huang, J. C.; Li, M. X.; Kauffman, D. R.; Cotlet, M.; Higaki, T.; Peteanu, L. A.; Shao, Z. Z. et al. A mono-cuboctahedral series of gold nanoclusters: Photoluminescence origin, large enhancement, wide tunability, and structure–property correlation. J. Am. Chem. Soc. 2019, 141, 5314–5325.

    CAS  Google Scholar 

  15. Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. USA 2008, 105, 9157–9162.

    CAS  Google Scholar 

  16. Nunokawa, K.; Onaka, S.; Ito, M.; Horibe, M.; Yonezawa, T.; Nishihara, H.; Ozeki, T.; Chiba, H.; Watase, S.; Nakamoto, M. Synthesis, single crystal X-ray analysis, and TEM for a single-sized Au11 cluster stabilized by SR ligands: The interface between molecules and particles. J. Organomet. Chem. 2006, 691, 638–642.

    CAS  Google Scholar 

  17. McKenzie, L. C.; Zaikova, T. O.; Hutchison, J. E. Structurally similar triphenylphosphine-stabilized undecagolds, Au11(PPh3)7Cl3 and [Au11(PPh3)8Cl2]Cl, exhibit distinct ligand exchange pathways with glutathione. J. Am. Chem. Soc. 2014, 136, 13426–13435.

    CAS  Google Scholar 

  18. Huang, T. H.; Zhao, F. Z.; Hu, Q. L.; Liu, Q.; Wu, T. C.; Zheng, D.; Kang, T. Y.; Gui, L. C.; Chen, J. Bisphosphine-stabilized gold nanoclusters with the crown/birdcage-shaped Au11 cores: Structures and optical properties. Inorg. Chem. 2020, 59, 16027–16034.

    CAS  Google Scholar 

  19. Zhou, M.; Jin, R. X.; Sfeir, M. Y.; Chen, Y. X.; Song, Y. B.; Jin, R. C. Electron localization in rod-shaped triicosahedral gold nanocluster. Proc. Natl. Acad. Sci. USA 2017, 114, E4697–E4705.

    CAS  Google Scholar 

  20. Gutrath, B. S.; Englert, U.; Wang, Y. T.; Simon, U. A missing link in undecagold cluster chemistry: Single-crystal X-ray analysis of [Au11(PPh3)7Cl3]. Eur. J. Org. Chem. 2013, 2013, 2002–2006.

    CAS  Google Scholar 

  21. Shichibu, Y.; Konishi, K. HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: A novel synthetic route to “magic-number” Au13 clusters. Small 2010, 6, 1216–1220.

    CAS  Google Scholar 

  22. Yanagimoto, Y.; Negishi, Y.; Fujihara, H.; Tsukuda, T. Chiroptical activity of BINAP-stabilized undecagold clusters. J. Phys. Chem. B 2006, 110, 11611–11614.

    CAS  Google Scholar 

  23. Zhang, S. S.; Feng, L.; Senanayake, R. D.; Aikens, C. M.; Wang, X. P.; Zhao, Q. Q.; Tung, C. H.; Sun, D. Diphosphine-protected ultrasmall gold nanoclusters: Opened icosahedral Au13 and heart-shaped Au8 clusters. Chem. Sci. 2018, 9, 1251–1258.

    CAS  Google Scholar 

  24. Shinjo, N.; Takano, S.; Tsukuda, T. Effects of π-electron systems on optical activity of Au11 clusters protected by chiral diphosphines. Bull. Korean Chem. Soc. 2021, 42, 1265–1268.

    CAS  Google Scholar 

  25. Si, W. D.; Li, Y. Z.; Zhang, S. S.; Wang, S. N.; Feng, L.; Gao, Z. Y.; Tung, C. H.; Sun, D. Toward controlled syntheses of diphosphine-protected homochiral gold nanoclusters through precursor engineering. ACS Nano 2021, 15, 16019–16029.

    CAS  Google Scholar 

  26. Gao, Y. L.; Bi, S. Q.; Wang, Y. F.; Li, J.; Su, T.; Gao, X. C. Co-ligand triphenylphosphine/alkynyl-stabilized undecagold nanocluster with a capped crown structure. RSC Adv. 2022, 12, 11047–11051.

    CAS  Google Scholar 

  27. Sugiuchi, M.; Shichibu, Y.; Nakanishi, T.; Hasegawa, Y.; Konishi, K. Cluster-π electronic interaction in a superatomic Au13 cluster bearing σ-bonded acetylide ligands. Chem. Commun. 2015, 51, 13519–13522.

    CAS  Google Scholar 

  28. Li, Y. Z.; Ganguly, R.; Hong, K. Y.; Li, Y. X.; Tessensohn, M. E.; Webster, R.; Leong, W. K. Stibine-protected Au13 nanoclusters: Syntheses, properties and facile conversion to GSH-protected Au25 nanocluster. Chem. Sci. 2018, 9, 8723–8730.

    CAS  Google Scholar 

  29. Patty, J. B.; Havenridge, S.; Tietje-Mckinney, D.; Siegler, M. A.; Singh, K. K.; Hajy Hosseini, R.; Ghabin, M.; Aikens, C. M.; Das, A. Crystal structure and optical properties of a chiral mixed thiolate/stibine-protected Au18 cluster. J. Am. Chem. Soc. 2022, 144, 478–484.

    CAS  Google Scholar 

  30. Kang, X.; Song, Y. B.; Deng, H. J.; Zhang, J.; Liu, B. J.; Pan, C. S.; Zhu, M. Z. Ligand-induced change of the crystal structure and enhanced stability of the Au11 nanocluster. RSC Adv. 2015, 5, 66879–66885.

    CAS  Google Scholar 

  31. Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419–425.

    CAS  Google Scholar 

  32. Luo, P.; Bai, S.; Wang, X.; Zhao, J.; Yan, Z. N.; Han, Y. F.; Zang, S. Q.; Mak, T. C. W. Tuning the magic sizes and optical properties of atomically precise bidentate N-heterocyclic carbene-protected gold nanoclusters via subtle change of N-substituents. Adv. Optical Mater. 2021, 9, 2001936.

    CAS  Google Scholar 

  33. Narouz, M. R.; Takano, S.; Lummis, P. A.; Levchenko, T. I.; Nazemi, A.; Kaappa, S.; Malola, S.; Yousefalizadeh, G.; Calhoun, L. A.; Stamplecoskie, K. G. et al. Robust, highly luminescent Au13 superatoms protected by N-heterocyclic carbenes. J. Am. Chem. Soc. 2019, 141, 14997–15002.

    CAS  Google Scholar 

  34. Yi, H.; Osten, K. M.; Levchenko, T. I.; Veinot, A. J.; Aramaki, Y.; Ooi, T.; Nambo, M.; Crudden, C. M. Synthesis and enantioseparation of chiral Au13 nanoclusters protected by bis-N-heterocyclic carbene ligands. Chem. Sci. 2021, 12, 10436–10440.

    CAS  Google Scholar 

  35. Takano, S.; Hirai, H.; Nakashima, T.; Iwasa, T.; Taketsugu, T.; Tsukuda, T. Photoluminescence of doped superatoms M@Au12 (M =Ru, Rh, Ir) homoleptically capped by (Ph2)PCH2P(Ph2): Efficient room-temperature phosphorescence from Ru@Au12. J. Am. Chem. Soc. 2021, 143, 10560–10564.

    CAS  Google Scholar 

  36. Chen, J.; Zhang, Q. F.; Bonaccorso, T. A.; Williard, P. G.; Wang, L. S. Controlling gold nanoclusters by diphospine ligands. J. Am. Chem. Soc. 2014, 136, 92–95.

    CAS  Google Scholar 

  37. Li, J. J.; Guan, Z. J.; Lei, Z.; Hu, F.; Wang, Q. M. Same magic number but different arrangement: Alkynyl-protected Au25 with D3 symmetry. Angew. Chem., Int. Ed. 2019, 58, 1083–1087.

    CAS  Google Scholar 

  38. Jin, R. X.; Liu, C.; Zhao, S.; Das, A.; Xing, H. Z.; Gayathri, C.; Xing, Y.; Rosi, N. L.; Gil, R. R.; Jin, R. C. Tri-icosahedral gold nanocluster [Au37(PPh3)10(SC2H4Ph)10X2]+: Linear assembly of icosahedral building blocks. ACS Nano 2015, 9, 8530–8536.

    CAS  Google Scholar 

  39. Song, Y. B.; Fu, F. Y.; Zhang, J.; Chai, J. S.; Kang, X.; Li, P.; Li, S. L.; Zhou, H. P.; Zhu, M. Z. The magic Au60 nanocluster: A new cluster-assembled material with five Au13 building blocks. Angew. Chem., Int. Ed. 2015, 54, 8430–8434.

    CAS  Google Scholar 

  40. Senanayake, R. D.; Akimov, A. V.; Aikens, C. M. Theoretical investigation of electron and nuclear dynamics in the [Au25(SH)18]−1 thiolate-protected gold nanocluster. J. Phys. Chem. C 2017, 121, 10653–10662.

    CAS  Google Scholar 

  41. Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501–507.

    CAS  Google Scholar 

  42. Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.

    CAS  Google Scholar 

  43. Song, Y. B.; Li, Y. W.; Zhou, M.; Liu, X.; Li, H.; Wang, H.; Shen, Y. H.; Zhu, M. Z.; Jin, R. C. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature. Sci. Adv. 2021, 7, eabd2091.

    CAS  Google Scholar 

  44. Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Luo, X. M.; Huang, J. H.; Zang, S. Q.; Mak, T. C. W. Alkynyl-stabilized superatomic silver clusters showing circularly polarized luminescence. J. Am. Chem. Soc. 2021, 143, 6048–6053.

    CAS  Google Scholar 

  45. Xie, M. C.; Han, C. M.; Liang, Q. Q.; Zhang, J.; Xie, G. H.; Xu, H. Highly efficient sky blue electroluminescence from ligand-activated copper iodide clusters: Overcoming the limitations of cluster light-emitting diodes. Sci. Adv. 2019, 5, eaav9857.

    CAS  Google Scholar 

  46. Han, Z.; Dong, X. Y.; Luo, P.; Li, S.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 2020, 6, eaay0107.

    CAS  Google Scholar 

  47. Si, W. D.; Zhang, C. K.; Zhou, M.; Tian, W. D.; Wang, Z.; Hu, Q. S.; Song, K. P.; Feng, L.; Huang, X. Q.; Gao, Z. Y. et al. Two triplet emitting states in one emitter: Near-infrared dual-phosphorescent Au20 nanocluster. Sci. Adv. 2023, 9, eadg3587.

    CAS  Google Scholar 

  48. Luo, P.; Zhai, X. J.; Bai, S.; Si, Y. B.; Dong, X. Y.; Han, Y. F.; Zang, S. Q. Highly efficient circularly polarized luminescence from chiral Au13 clusters stabilized by enantiopure monodentate NHC ligands. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202219017.

  49. Guan, J. X.; Wei, R.; Prlj, A.; Peng, J.; Lin, K. H.; Liu, J. T.; Han, H.; Corminboeuf, C.; Zhao, D. H.; Yu, Z. H. et al. Direct observation of aggregation-induced emission mechanism. Angew. Chem., Int. Ed. 2020, 59, 14903–14909.

    CAS  Google Scholar 

  50. Wen, X. W.; Chen, H. L.; Wu, T. M.; Yu, Z. H.; Yang, Q. R.; Deng, J. W.; Liu, Z. T.; Guo, X.; Guan, J. X.; Zhang, X. et al. Ultrafast probes of electron–hole transitions between two atomic layers. Nat. Commun. 2018, 9, 1859.

    Google Scholar 

  51. Kong, J.; Zhang, W.; Wu, Y. Z.; Zhou, M. Optical Properties of gold nanoclusters constructed from Au13 units. Aggregate 2022, 3, e207.

    CAS  Google Scholar 

  52. Wu, B.; Hu, J. H.; Cui, P.; Jiang, L.; Chen, Z. W.; Zhang, Q.; Wang, C. R.; Luo, Y. Visible-light photoexcited electron dynamics of scandium endohedral metallofullerenes: The cage symmetry and substituent effects. J. Am. Chem. Soc. 2015, 137, 8769–8774.

    CAS  Google Scholar 

  53. Liu, X.; Xu, W. W.; Huang, X. Y.; Wang, E. D.; Cai, X.; Zhao, Y.; Li, J.; Xiao, M.; Zhang, C. F.; Gao, Y. et al. De novo design of Au36(SR)24 nanoclusters. Nat. Commun. 2020, 11, 3349.

    CAS  Google Scholar 

  54. Liu, Y. J.; Kim, J.; Seo, H.; Park, S.; Chae, J. Copper(II)-catalyzed single-step synthesis of aryl thiols from aryl halides and 1, 2-ethanedithiol. Adv. Synth. Catal. 2015, 357, 2205–2212.

    CAS  Google Scholar 

  55. Yao, Q. F.; Liu, L. M.; Malola, S.; Ge, M.; Xu, H. Y.; Wu, Z. N.; Chen, T. K.; Cao, Y. T.; Matus, M. F.; Pihlajamäki, A. et al. Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nat. Chem. 2023, 15, 230–239.

    CAS  Google Scholar 

  56. Liu, H. L.; Li, Y. H.; Sun, S.; Xin, Q.; Liu, S. H.; Mu, X. Y.; Yuan, X.; Chen, K.; Wang, H.; Varga, K. et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat. Commun. 2021, 12, 114.

    CAS  Google Scholar 

  57. Chen, T. K.; Yao, Q. F.; Nasaruddin, R. R.; Xie, J. P. Electrospray ionization mass spectrometry: A powerful platform for noble-metal nanocluster analysis. Angew. Chem., Int. Ed. 2019, 58, 11967–11977.

    CAS  Google Scholar 

  58. Wu, Z. K.; Lanni, E.; Chen, W. Q.; Bier, M. E.; Ly, D.; Jin, R. C. High yield, large scale synthesis of thiolate-protected Ag7 clusters. J. Am. Chem. Soc. 2009, 131, 16672–16674.

    CAS  Google Scholar 

  59. Zhang, J. W.; Zhou, Y.; Zheng, K.; Abroshan, H.; Kauffman, D. R.; Sun, J. L.; Li, G. Diphosphine-induced chiral propeller arrangement of gold nanoclusters for singlet oxygen photogeneration. Nano Res. 2018, 11, 5787–5798.

    CAS  Google Scholar 

  60. Caspar, J. V.; Kober, E. M.; Sullivan, B. P.; Meyer, T. J. Application of the energy gap law to the decay of charge-transfer excited states. J. Am. Chem. Soc. 1982, 104, 630–632.

    CAS  Google Scholar 

  61. Hirai, H.; Takano, S.; Nakashima, T.; Iwasa, T.; Taketsugu, T.; Tsukuda, T. Doping-mediated energy-level engineering of M@Au12 superatoms (M = Pd, Pt, Rh, Ir) for efficient photoluminescence and photocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202207290.

    CAS  Google Scholar 

  62. Dunstan, P. O. Thermochemistry of adducts of Tin(IV) bromide with heterocyclic bases. Thermochim. Acta 2003, 404, 117–123.

    CAS  Google Scholar 

  63. Chen, H. L.; Chen, X.; Deng, J. W.; Zheng, J. R. Isotropic ordering of ions in ionic liquids on the sub-nanometer scale. Chem. Sci. 2018, 9, 1464–1472.

    CAS  Google Scholar 

  64. Pensack, R. D.; Banyas, K. M.; Barbour, L. W.; Hegadorn, M.; Asbury, J. B. Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials. Phys. Chem. Chem. Phys. 2009, 11, 2575–2591.

    CAS  Google Scholar 

  65. Pensack, R. D.; Asbury, J. B. Barrierless free carrier formation in an organic photovoltaic material measured with ultrafast vibrational spectroscopy. J. Am. Chem. Soc. 2009, 131, 15986–15987.

    CAS  Google Scholar 

  66. Xiao, D. Q.; Prémont-Schwarz, M.; Nibbering, E. T. J.; Batista, V. S. Ultrafast vibrational frequency shifts induced by electronic excitations: Naphthols in low dielectric media. J. Phys. Chem. A 2012, 116, 2775–2790.

    CAS  Google Scholar 

  67. Li, J.; Wang, P.; Pei, Y. Ligand shell isomerization induces different fluorescence origins of two Au28 nanoclusters. J. Phys. Chem. Lett. 2022, 13, 3718–3725.

    CAS  Google Scholar 

  68. Dong, X. Y.; Si, Y. B.; Yang, J. S.; Zhang, C.; Han, Z.; Luo, P.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nat. Commun. 2020, 11, 3678.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U21A20277, 92061201, 21825106, 21975065, 12174012, 22203006, and 22103072) and Zhengzhou University. The authors thank for the support of parallel high performance computing of National Supercomputing Center in Zhengzhou.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-Yan Dong, Zhihao Yu or Shuang-Quan Zang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, XJ., Hu, JH., Guan, J. et al. Luminescence modulation of ultrasmall gold clusters by aromatic ligands. Nano Res. 16, 11366–11374 (2023). https://doi.org/10.1007/s12274-023-5817-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5817-5

Keywords

Navigation