Skip to main content
Log in

Engineering active sites of cathodic materials for high-performance Zn-nitrogen batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As an ideal carbon-free energy carrier, ammonia plays an indispensable role in modern society. The conventional industrial synthesis of NH3 by the Haber-Bosch technique under harsh reaction conditions results in serious energy consumption and environmental pollution. Therefore, it is essential to develop NH3 synthesis tactics under benign conditions. Electrochemical synthesis of NH3 has the advantages of mild reaction conditions and environmental friendliness, and has become a hotspot for research in recent years. It has been reported that zinc-nitrogen batteries (ZNBs), such as Zn-N2, Zn-NO, Zn-NO3, and Zn-NO2 batteries, can not only reduce nitrogenous species to ammonia but also have concomitant power output. However, the common drawbacks of these battery systems are unsatisfactory power density and ammonia production. In this review, the latest progress of ZNBs including the reaction mechanism of the battery and reactor design principles is systematically summarized. Subsequently, active site engineering of cathode catalysts is discussed, including vacancy defects, chemical doping, and heterostructure engineering. Finally, some insights are provided to improve the performance of ZNBs from a practical perspective of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, A. L.; Xia, B. Y. Ambient dinitrogen electrocatalytic reduction for ammonia synthesis. J. Mater. Chem. A 2019, 7, 23416–23431.

    CAS  Google Scholar 

  2. He, S.; Somayaji, V.; Wang, M. D.; Lee, S. H.; Geng, Z. J.; Zhu, S. Y.; Novello, P.; Varanasi, C. V.; Liu, J. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Res. 2022, 15, 4785–4791.

    CAS  Google Scholar 

  3. van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290–294.

    Google Scholar 

  4. Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 2017, 286, 2–13.

    CAS  Google Scholar 

  5. Li, C. C.; Wang, T.; Gong, J. L. Alternative strategies toward sustainable ammonia synthesis. Trans. Tianjin Univ. 2020, 26, 67–91.

    CAS  Google Scholar 

  6. Rouwenhorst, K. H. R.; Engelmann, Y.; van’ tVeer, K.; Postma, R. S.; Bogaerts, A.; Lefferts, L. Plasma-driven catalysis: Green ammonia synthesis with intermittent electricity. Green Chem. 2020, 22, 6258–6287.

    CAS  Google Scholar 

  7. Teng, M. J.; Ye, J. R.; Wan, C.; He, G. Y.; Chen, H. Q. Research progress on Cu-based catalysts for electrochemical nitrate reduction reaction to ammonia. Ind. Eng. Chem. Res. 2022, 61, 14731–14746.

    CAS  Google Scholar 

  8. Lu, G. L.; Gao, S. S.; Liu, Q.; Zhang, S. S.; Luo, J.; Liu, X. J. Design of material regulatory mechanism for electrocatalytic converting NO/NO3 to NH3 progress. ate. in press, https://doi.org/10.1002/ntls.20220047.

  9. Wang, H. P.; Zhang, F.; Jin, M. M.; Zhao, D. L.; Fan, X. Y.; Li, Z. R.; Luo, Y. S.; Zheng, D. D.; Li, T. S.; Wang, Y. et al. V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Mater. Today Phys. 2023, 30, 100944.

    CAS  Google Scholar 

  10. Goldstein, V.; Rath, M. K.; Kossenko, A.; Litvak, N.; Kalashnikov, A.; Zinigrad, M. Solid oxide fuel cells for ammonia synthesis and energy conversion. Sustainable Energy Fuels 2022, 6, 4706–4715.

    CAS  Google Scholar 

  11. Jiao, F.; Xu, B. J. Electrochemical ammonia synthesis and ammonia fuel cells. Adv. Mater. 2019, 31, e1805173.

    Google Scholar 

  12. Wu, T. T.; Fan, W. J.; Zhang, Y.; Zhang, F. X. Electrochemical synthesis of ammonia: Progress and challenges. Mater. Today Phys. 2021, 16, 100310.

    CAS  Google Scholar 

  13. Peng, X. Y.; Zhang, R.; Mi, Y. Y.; Wang, H. T.; Huang, Y. C.; Han, L. L.; Head, A. R.; Pao, C. W.; Liu, X. J.; Dong, C. L. et al. Disordered Au nanoclusters for efficient ammonia electrosynthesis. ChemSusChem 2023, 16, e202201385.

  14. Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

    Google Scholar 

  15. Meng, G.; Jin, M. M.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Peng, X. Y.; Luo, J.; Liu, X. J. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res. 2022, 15, 8890–8896.

    CAS  Google Scholar 

  16. Li, J.; Zhao, D. L.; Zhang, L. C.; Ren, Y. C.; Yue, L. C.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Chen, Q. Y.; Li, T. S. et al. Boosting electrochemical nitrate-to-ammonia conversion by self-supported MnCo2O4 nanowire array. J. Colloid Interface Sci. 2023, 669, 805–812.

    Google Scholar 

  17. Guo, Y.; Zhang, R.; Zhang, S. C.; Zhao, Y. W.; Yang, Q.; Huang, Z. D.; Dong, B. B.; Zhi, C. Y. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy Environ. Sci. 2021, 14, 3938–3944.

    CAS  Google Scholar 

  18. Zhang, R.; Wu, Z. X.; Huang, Z. D.; Guo, Y.; Zhang, S. C.; Zhao, Y. W.; Zhi, C. Y. Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery. Chin. Chem. Lett. 2023, 34, 107600.

    CAS  Google Scholar 

  19. Zhang, R.; Zhang, S. C.; Guo, Y.; Li, C.; Liu, J. H.; Huang, Z. D.; Zhao, Y. W.; Li, Y. Y.; Zhi, C. Y. A Zn-nitrite battery as an energy-output electrocatalytic system for high-efficiency ammonia synthesis using carbon-doped cobalt oxide nanotubes. Energy Environ. Sci. 2022, 15, 3024–3032.

    CAS  Google Scholar 

  20. Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

    CAS  Google Scholar 

  21. Ren, J. T.; Chen, L.; Wang, H. Y.; Yuan, Z. Y. Aqueous rechargeable Zn-N2 battery assembled by bifunctional cobalt phosphate nanocrystals-loaded carbon nanosheets for simultaneous NH3 production and power generation. ACS Appl. Mater. Interfaces 2021, 13, 12106–12117.

    CAS  Google Scholar 

  22. Li, X. H.; Li, T. S.; Ma, Y. J.; Wei, Q.; Qiu, W. B.; Guo, H. R.; Shi, X. F.; Zhang, P.; Asiri, A. M.; Chen, L. et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.

    Google Scholar 

  23. Li, X. T.; Chen, K.; Lu, X. B.; Ma, D. W.; Chu, K. Atomically dispersed Co catalyst for electrocatalytic NO reduction to NH3. Chem. Eng. J. 2023, 454, 140333.

    CAS  Google Scholar 

  24. Liu, W. X.; Feng, J. X.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, Y.; Luo, J.; Liu, X. J. Active-site and interface engineering of cathode materials for aqueous Zn-gas batteries. Nano Res. 2023, 16, 2325–2346.

    CAS  Google Scholar 

  25. Liu, H.; Liu, X. Y.; Yu, Y. S.; Yang, W. W.; Li, J.; Feng, M.; Li, H. B. Bifunctional networked Ag/AgPd core/shell nanowires for the highly efficient dehydrogenation of formic acid and subsequent reduction of nitrate and nitrite in water. J. Mater. Chem. A 2018, 6, 4611–4616.

    CAS  Google Scholar 

  26. Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate—A step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.

    CAS  Google Scholar 

  27. Zhang, R.; Guo, Y.; Zhang, S. C.; Chen, D.; Zhao, Y. W.; Huang, Z. D.; Ma, L. T.; Li, P.; Yang, Q.; Liang, G. J. et al. Efficient ammonia electrosynthesis and energy conversion through a Zn-nitrate battery by iron doping engineered nickel phosphide catalyst. Adv. Energy Mater. 2022, 12, 2103872.

    CAS  Google Scholar 

  28. Qiu, H.; Chen, Q. Y.; An, X. G.; Liu, Q.; Xie, L. S.; Zhang, J.; Yao, W. T.; Luo, Y. S.; Sun, S. J.; Kong, Q. Q. et al. WO2 nanoparticles with oxygen vacancies: A high-efficiency electrocatalyst for the conversion of nitrite to ammonia. J. Mater. Chem. A 2022, 10, 24969–24974.

    CAS  Google Scholar 

  29. Kosaka, F.; Nakamura, T.; Oikawa, A.; Otomo, J. Electrochemical acceleration of ammonia synthesis on Fe-based alkali-promoted electrocatalyst with proton conducting solid electrolyte. ACS Sustainable Chem. Eng. 2017, 5, 10439–10446.

    CAS  Google Scholar 

  30. Zhang, L. C.; Zhou, Q.; Liang, J.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Gong, F. et al. Enhancing electrocatalytic NO reduction to NH3 by the CoS nanosheet with sulfur vacancies. Inorg. Chem. 2022, 61, 8096–8102.

    CAS  Google Scholar 

  31. Qiao, Y. J.; Peng, M.; Lan, J.; Jiang, K.; Chen, D. C.; Tan, Y. W. Active-site engineering in dealloyed nanoporous catalysts for electrocatalytic water splitting. J. Mater. Chem. A 2223, 11, 495–511.

    Google Scholar 

  32. Gao, S. S.; Wang, T. W.; Jin, M. M.; Zhang, S. S.; Liu, Q.; Hu, G. Z.; Yang, H.; Luo, J.; Liu, X. J. Bifunctional Nb-N-C atomic catalyst for aqueous Zn-air battery driving CO2 electrolysis. Sci. China Mater. 2023, 66, 1013–1023.

    CAS  Google Scholar 

  33. Ge, S. M.; Zhang, L. W.; Hou, J. R.; Liu, S.; Qin, Y. J.; Liu, Q.; Cai, X. B.; Sun, Z. Y.; Yang, M. S.; Luo, J. et al. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl. Energy Mater. 2022, 5, 9487–9494.

    CAS  Google Scholar 

  34. Shen, H.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, J.; Liu, X. J. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production. J. Colloid Interface Sci. 2023, 634, 730–736.

    CAS  Google Scholar 

  35. Yang, M. S.; Sun, J. Q.; Qin, Y. J.; Yang, H.; Zhang, S. S.; Liu, X. J.; Luo, J. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Sci. China Mater. 2022, 65, 536–542.

    CAS  Google Scholar 

  36. Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

    Google Scholar 

  37. Zhang, W. J.; Jiang, M. H.; Yang, S. Y.; Hu, Y.; Mu, B.; Tie, Z.; Jin, Z. In-situ grown CuOx nanowire forest on copper foam: A 3D hierarchical and freestanding electrocatalyst with enhanced carbonaceous product selectivity in CO2 reduction. Nano Res. Energy 2022, 1, e9120033.

    Google Scholar 

  38. Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

    Google Scholar 

  39. Liu, W. X.; Feng, J. X.; Yin, R. L.; Ni, Y. F.; Zheng, D.; Que, W. B.; Niu, X. X.; Dai, X. J.; Shi, W. H.; Wu, F. F. et al. Tailoring oxygenated groups of monolithic cobalt-nitrogen-carbon frameworks for highly efficient hydrogen peroxide production in acidic media. Chem. Eng. J. 2022, 430, 132990.

    CAS  Google Scholar 

  40. Liu, W. X.; Que, W. B.; Shen, X. H.; Yin, R. L.; Xu, X. L.; Zheng, D.; Feng, J. X.; Dai, X. J.; Niu, X. X.; Wu, F. F. et al. Unlocking active metal site of Ti-MOF for boosted heterogeneous catalysis via a facile coordinative reconstruction. Nanotechnology 2022, 33, 025401.

    CAS  Google Scholar 

  41. Zhang, H.; Qi, G. C.; Liu, W.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Bimetallic phosphoselenide nanosheets as bifunctional catalysts for 5-hydroxymethylfurfural oxidation and hydrogen evolution. Inorg. Chem. Front. 2023, 10, 2423–2429.

    CAS  Google Scholar 

  42. Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

    CAS  Google Scholar 

  43. Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Aggew. Chem., Int. Ed. 2023, 62, e202217449.

    CAS  Google Scholar 

  44. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angee. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  45. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    CAS  Google Scholar 

  46. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    CAS  Google Scholar 

  47. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  48. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for highperformance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  49. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of singleatom catalysts through p–n junction rectification. Angee. Chem., Int. Ed. 2023, 62, e202212335.

    CAS  Google Scholar 

  50. Liang, J.; Chen, H. Y.; Mou, T.; Zhang, L. C.; Lin, Y. T.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A. et al. Coupling denitrification and ammonia synthesis via selective electrochemical reduction of nitric oxide over Fe2O3 nanorods. J. Mater. Chem. A 2022, 10, 6454–6462.

    CAS  Google Scholar 

  51. Liu, H. X.; Fu, J. T.; Li, H. Y.; Sun, J. Q.; Liu, X. J.; Qiu, Y.; Peng, X. Y.; Liu, Y. F.; Bao, H. H.; Zhuo, L. C. et al. Single palladium site in ordered porous heteroatom-doped carbon for highperformance alkaline hydrogen oxidation. Appl. Catal. B: Environ. 2022, 306, 121029.

    CAS  Google Scholar 

  52. Choi, M.; Lee, W. Tuning the oxygen vacancy concentration in a heterostructured electrode for high chemical and electrochemical stabilities. Chem. Eng. J. 2022, 431, 134345.

    CAS  Google Scholar 

  53. Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.

    Google Scholar 

  54. Liu, W. X.; Que, W. B.; Yin, R. L.; Dai, J. L.; Zheng, D.; Feng, J. X.; Xu, X. L.; Wu, F. F.; Shi, W. H.; Liu, X. J. et al. Ferrum-molybdenum dual incorporated cobalt oxides as efficient bifunctional anti-corrosion electrocatalyst for seawater splitting. Appl. Catal. B: Environ. 2023, 328, 122488.

    CAS  Google Scholar 

  55. Hou, X. H.; Ding, J. Y.; Liu, W. X.; Zhang, S. S.; Luo, J.; Liu, X. J. Asymmetric coordination environment engineering of atomic catalysts for CO2 reduction. Nanomaterials 2023, 13, 309.

    CAS  Google Scholar 

  56. Ji, Y. A.; Du, J.; Chen, A. B. Review on heteroatom doping carbonaceous materials toward electrocatalytic carbon dioxide reduction. Trans. Tianjin Univ. 2022, 28, 292–306.

    CAS  Google Scholar 

  57. Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angee. Chem., Int. Ed. 2020, 59, 5350–5354.

    CAS  Google Scholar 

  58. Wang, H.; Li, Z. J.; Li, Y.; Yang, B.; Chen, J.; Lei, L. C.; Wang, S. B.; Hou, Y. An exfoliated iron phosphorus trisulfide nanosheet with rich sulfur vacancy for efficient dinitrogen fixation and Zn-N2 battery. Nano Energy 2021, 81, 105613.

    CAS  Google Scholar 

  59. Luo, P.; Zhang, W. W.; Cai, W. Y.; Huang, Z.; Liu, G. Y.; Liu, C.; Wang, S. Y.; Chen, F.; Xia, L. X.; Zhao, Y. et al. Accelerated ion/electron transport kinetics and increased active sites via local internal electric fields in heterostructured VO2-carbon cloth for enhanced zinc-ion storage. Nano Res. 2023, 16, 503–512.

    CAS  Google Scholar 

  60. Gao, S. S.; Wei, T. R.; Sun, J. Q.; Liu, Q.; Ma, D.; Liu, W. X.; Zhang, S. S.; Luo, J.; Liu, X. J. Atomically dispersed metal-based catalysts for Zn-CO2 batteries. Small Struct. 2022, 3, 2200086.

    CAS  Google Scholar 

  61. Lu, G. L.; Wang, Z. G.; Zhang, S. S.; Ding, J. Y.; Luo, J.; Liu, X. J. Cathode materials for halide-based aqueous redox flow batteries: Recent progress and future perspectives. Nanoscale 2023, 15, 4250–4260.

    CAS  Google Scholar 

  62. Yang, M. S.; Liu, S.; Sun, J. Q.; Jin, M. M.; Fu, R.; Zhang, S. S.; Li, H. Y.; Sun, Z. Y.; Luo, J.; Liu, X. J. Highly dispersed Bi clusters for efficient rechargeable Zn-CO2 batteries. Appl. Catal. B: Environ. 2022, 307, 121145.

    CAS  Google Scholar 

  63. Feng, J. X.; Zheng, D.; Yin, R. L.; Niu, X. X.; Xu, X. L.; Meng, S. B.; Ma, S. L.; Shi, W. H.; Wu, F. F.; Liu, W. X. et al. A wide-temperature adaptive aqueous zinc-air battery-based on Cu-Co dual metal-nitrogen-carbon/nanoparticle electrocatalysts. Small Struct., in press, https://doi.org/10.1002/sstr.202200340.

  64. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    CAS  Google Scholar 

  65. Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

    CAS  Google Scholar 

  66. Cui, J. Y.; Li, Z. H.; Xu, A. N.; Li, J. B.; Shao, M. F. Confinement of zinc salt in ultrathin heterogeneous film to stabilize zinc metal anode. Small 2021, 17, 2100722.

    CAS  Google Scholar 

  67. Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhang, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 2022, 1, e9120025.

    Google Scholar 

  68. Liu, W.; Han, L. L.; Wang, H. T.; Zhao, X. R.; Boscoboinik, J. A.; Liu, X. J.; Pao, C. W.; Sun, J. Q.; Zhuo, L. C.; Luo, J. et al. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 2020, 77, 105078.

    CAS  Google Scholar 

  69. Wang, H.; Si, J. C.; Zhang, T. Y.; Li, Y.; Yang, B.; Li, Z. J.; Chen, J.; Wen, Z. H.; Yuan, C.; Lei, L. C. et al. Exfoliated metallic niobium disulfate nanosheets for enhanced electrochemical ammonia synthesis and Zn-N2 battery. Appl. Catal. B: Environ. 2020, 270, 118892.

    CAS  Google Scholar 

  70. Gao, S. S.; Chen, S. S.; Liu, Q.; Zhang, S. S.; Qi, G. C.; Luo, J.; Liu, X. J. Bifunctional BiPd alloy particles anchored on carbon matrix for reversible Zn-CO2 battery. ACS Appl. Nano Mater. 2022, 5, 12387–12394.

    CAS  Google Scholar 

  71. Ren, J. T.; Chen, L.; Liu, Y. P.; Yuan, Z. Y. Hollow cobalt phosphate microspheres for sustainable electrochemical ammonia production through rechargeable Zn-N2 batteries. J. Mater. Chem. A 2021, 9, 11370–11380.

    CAS  Google Scholar 

  72. Huang, Z. L.; Rafiq, M.; Woldu, A. R.; Tong, Q. X.; Astruc, D.; Hu, L. S. Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR). Coord. Chem. Rev. 2023, 478, 214981.

    CAS  Google Scholar 

  73. Li, Q. Q.; Guo, Y. L.; Tian, Y.; Liu, W. M.; Chu, K. Activating VS2 basal planes for enhanced NRR electrocatalysis: The synergistic role of S-vacancies and B dopants. J. Mater. Chem. A 2020, 8, 16195–16202.

    CAS  Google Scholar 

  74. Huang, S. M.; Zhang, M.; Liu, Y. T. Preparation and NRR application of transition metal nanosheets on carbon nanofiber membranes. J. Phys.: Conf. Ser. 2021, 1948, 012222.

    CAS  Google Scholar 

  75. Liu, K.; Fu, J. W.; Zhu, L.; Zhang, X. D.; Li, H. M.; Liu, H.; Hu, J. H.; Liu, M. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale 2020, 12, 4903–4908.

    CAS  Google Scholar 

  76. Chen, H. H.; Zhang, S. S.; Liu, Q.; Yu, P.; Luo, J.; Hu, G. Z.; Liu, X. J. CoSe2 nanocrystals embedded into carbon framework as efficient bifunctional catalyst for alkaline seawater splitting. Inorg. Chem. Commun. 2022, 146, 110170.

    CAS  Google Scholar 

  77. Liu, X. J.; Yang, H.; He, J.; Liu, H. X.; Song, L. D.; Li, L.; Luo, J. Highly active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4. Small 2018, 14, 1704049.

    Google Scholar 

  78. Shen, S. B.; He, J.; Peng, X. Y.; Xi, W.; Zhang, L. H.; Xi, D. S.; Wang, L.; Liu, X. J.; Luo, J. Stepped surface-rich copper fiber felt as an efficient electrocatalyst for the CO2RR to formate. J. Mater. Chem. A 2018, 6, 18960–18966.

    CAS  Google Scholar 

  79. Du, C.; Gao, Y. J.; Wang, J. G.; Chen, W. Achieving 59% Faradaic efficiency of the N2 electroreduction reaction in an aqueous Zn-N2 battery by facilely regulating the surface mass transport on metallic copper. Chem. Commun. 2019, 55, 12801–12804.

    CAS  Google Scholar 

  80. Lin, S. S.; Zhang, X. H.; Chen, L. G.; Zhang, Q.; Ma, L. L.; Liu, J. G. A review on catalysts for electrocatalytic and photocatalytic reduction of N2 to ammonia. Green Chem. 2022, 24, 9003–9026.

    CAS  Google Scholar 

  81. Lv, X. W.; Liu, Y. P.; Wang, Y. S.; Liu, X. L.; Yuan, Z. Y. Encapsulating vanadium nitride nanodots into N,S-codoped graphitized carbon for synergistic electrocatalytic nitrogen reduction and aqueous Zn-N2 battery. Appl. Catal. B: Environ. 2021, 280, 119434.

    CAS  Google Scholar 

  82. Chen, H. J.; Xu, Z. Q.; Sun, S. J.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Feng, Z. S.; Sun, X. P.; Wang, Y. Plasma-etched Ti2O3 with oxygen vacancies for enhanced NH3 electrosynthesis and Zn-N2 batteries. Inorg. Chem. Front. 2022, 9, 4608–4613.

    CAS  Google Scholar 

  83. Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

    CAS  Google Scholar 

  84. Boyano, A.; Gálvez, M. E.; Moliner, R.; Lázaro, M. J. Carbon based catalytic briquettes for the reduction of NO: Catalyst scale-up. Catal. Today 2008, 137, 209–214.

    CAS  Google Scholar 

  85. Chen, K.; Wang, J. X.; Kang, J. L.; Lu, X. B.; Zhao, X. L.; Chu, K. Atomically Fe-doped MoS2−x with Fe-Mo dual sites for efficient electrocatalytic NO reduction to NH3. Appl. Catal. B: Environ. 2023, 324, 122241.

    CAS  Google Scholar 

  86. Wei, T. R.; Bao, H. H.; Wang, X. Z.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Ionic liquid-assisted electrocatalytic NO reduction to NH3 by P-doped MoS2. ChemCatChem 2023, 15, e202201411.

    CAS  Google Scholar 

  87. Wei, T. R.; Liu, W. X.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production. Chem. Commun. 2023, 59, 442–445.

    CAS  Google Scholar 

  88. Lin, Y. T.; Liang, J.; Li, H. B.; Zhang, L. C.; Mou, T.; Li, T. S.; Yue, L. C.; Ji, Y. Y.; Liu, Q.; Luo, Y. L. et al. Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH3 at ambient conditions. Mater. Today Phys. 2022, 22, 100611.

    CAS  Google Scholar 

  89. Liu, Q.; Lin, Y. T.; Yue, L. C.; Liang, J.; Zhang, L. C.; Li, T. S.; Luo, Y. S.; Liu, M. L.; You, J. M.; Alshehri, A. A. et al. Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3. Nano Res. 2022, 15, 5032–5037.

    CAS  Google Scholar 

  90. Liu, P. Y.; Liang, J.; Wang, J. Q.; Zhang, L. C.; Li, J.; Yue, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. L.; Li, N. et al. High-performance NH3 production via NO electroreduction over a NiO nanosheet array. Chem. Commun. 2021, 57, 13562–13565.

    CAS  Google Scholar 

  91. Du, M. X.; Li, D.; Liu, S. Z.; Yan, J. Q. Transition metal phosphides: A wonder catalyst for electrocatalytic hydrogen production. Chin. Chem. Lett.}, in press, https://doi.org/10.1016/j.cclet.2023.108156.

  92. Mou, T.; Liang, J.; Ma, Z. Y.; Zhang, L. C.; Lin, Y. T.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y.; Gao, S. Y. et al. High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni2P nanoarray under ambient conditions. J. Mater. Chem. A 2021, 9, 24268–24275.

    CAS  Google Scholar 

  93. Liang, J.; Hu, W. F.; Song, B. Y.; Mou, T.; Zhang, L. C.; Luo, Y. S.; Liu, Q.; Alshehri, A. A.; Hamdy, M. S.; Yang, L. M. et al. Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorg. Chem. Front. 2022, 9, 1366–1372.

    CAS  Google Scholar 

  94. Meng, G.; Wei, T. R.; Liu, W. J.; Li, W. B.; Zhang, S. S.; Liu, W. X.; Liu, Q.; Bao, H. H.; Luo, J.; Liu, X. J. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chem. Commun. 2022, 58, 8097–8100.

    CAS  Google Scholar 

  95. Deng, Z. Q.; Liang, J.; Liu, Q.; Ma, C. Q.; Xie, L. S.; Yue, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chem. Eng. J. 2022, 435, 135104.

    CAS  Google Scholar 

  96. Reddy, K. M.; Singh, S. P. Easy removal of nitrate and phosphate anions from water by low cost chitosan and activated charcoal. Int. J. Chem. React. Eng. 2020, 18, 20200113.

    CAS  Google Scholar 

  97. Zhou, J. J.; Pan, F.; Yao, Q. F.; Zhu, Y. Q.; Ma, H. R.; Niu, J. F.; Xie, J. P. Achieving efficient and stable electrochemical nitrate removal by in-titu reconstruction of Cu2O/Cu electroactive nanocatalysts on Cu foam. Appl. Catal. B: Environ. 2022, 317, 121811.

    CAS  Google Scholar 

  98. Gao, Q.; Pillai, H. S.; Huang, Y.; Liu, S. K.; Mu, Q. M.; Han, X.; Yan, Z. H.; Zhou, H.; He, Q.; Xin, H. L. et al. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat. Commun. 2022, 13, 2338.

    CAS  Google Scholar 

  99. Cai, W.; Deng, J. Y.; Lu, H. M.; Cao, Y. Performance of metal borides as anode in metal boride-air battery. Mater. Chem. Phys. 2020, 251, 123101.

    CAS  Google Scholar 

  100. Xie, L. S.; Sun, S. J.; Hu, L.; Chen, J.; Li, J.; Ouyang, L.; Luo, Y. S.; Alshehri, A. A.; Kong, Q. Q.; Liu, Q. et al. In situ derived Co2B nanosheet array: A high-efficiency electrocatalyst for ambient ammonia synthesis via nitrate reduction. ACS Appl. Mater. Interfaces 2022, 14, 49650–49657.

    CAS  Google Scholar 

  101. Liu, Q.; Xie, L. S.; Liang, J.; Ren, Y. C.; Wang, Y. Y.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array. Small 2022, 18, e2106961.

    Google Scholar 

  102. Li, Z. R.; Liang, J.; Liu, Q.; Xie, L. S.; Zhang, L. C.; Ren, Y. C.; Yue, L. C.; Li, N.; Tang, B.; Alshehri, A. A. et al. High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Mater. Today Phys. 2022, 23, 100619.

    CAS  Google Scholar 

  103. Wu, T. Y.; Kong, X. G.; Tong, S. Y.; Chen, Y.; Liu, J.; Tang, Y.; Yang, X. J.; Chen, Y. M.; Wan, P. Y. Self-supported Cu nanosheets derived from CuCl-CuO for highly efficient electrochemical degradation of NO3. Appl. Surf. Sci. 2019, 489, 321–329.

    CAS  Google Scholar 

  104. Wen, W. D.; Yan, P.; Sun, W. P.; Zhou, Y. T.; Yu, X. Y. Metastable phase Cu with optimized local electronic state for efficient electrocatalytic production of ammonia from nitrate. Adv. Funct. Mater. 2023, 33, 2212236.

    CAS  Google Scholar 

  105. Li, S. X.; Liang, J.; Wei, P. P.; Liu, Q.; Xie, L. S.; Luo, Y. L.; Sun, X. P. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, 2, 382–388.

    Google Scholar 

  106. Ren, Z. F.; Chen, Q. Y.; An, X. G.; Liu, Q.; Xie, L. S.; Zhang, J.; Yao, W. T.; Hamdy, M. S.; Kong, Q. Q.; Sun, X. P. High-efficiency ammonia electrosynthesis on anatase TiO2−x nanobelt arrays with oxygen vacancies by selective reduction of nitrite. Inorg. Chem. 2022, 61, 12895–12902.

    CAS  Google Scholar 

  107. Li, C.; Li, K.; Chen, C.; Tang, Q. L.; Sun, T. H.; Jia, J. P. Electrochemical removal of nitrate using a nanosheet structured Co3O4/Ti cathode: Effects of temperature, current and pH adjusting. Sep. Purif. Technol. 2020, 237, 116485.

    CAS  Google Scholar 

  108. Lv, X. W.; Liu, X. L.; Gao, L. J.; Liu, Y. P.; Yuan, Z. Y. Iron-doped titanium dioxide hollow nanospheres for efficient nitrogen fixation and Zn-N2 aqueous batteries. J. Mater. Chem. A 2021, 9, 4026–4035.

    CAS  Google Scholar 

  109. Li, Z. R.; Deng, Z. Q.; Ouyang, L.; Fan, X. Y.; Zhang, L. C.; Sun, S. J.; Liu, Q.; Alshehri, A. A.; Luo, Y. L.; Kong, Q. Q. et al. CeO2 nanoparticles with oxygen vacancies decorated N-doped carbon nanorods: A highly efficient catalyst for nitrate electroreduction to ammonia. Nano Res. 2022, 15, 8914–8921.

    CAS  Google Scholar 

  110. Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

    CAS  Google Scholar 

  111. Ling, Y. F.; Ma, Q. L.; Yu, Y. F.; Zhang, B. Optimization strategies for selective CO2 electroreduction to fuels. Trans. Tianjin Univ. 2021, 27, 180–200.

    CAS  Google Scholar 

  112. Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.

    CAS  Google Scholar 

  113. Guo, N. K.; Xue, H.; Bao, A.; Wang, Z. H.; Sun, J.; Song, T. S.; Ge, X.; Zhang, W.; Huang, K. K.; He, F. et al. Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process. Angee. Chem., Int. Ed. 2020, 59, 13778–13784.

    CAS  Google Scholar 

  114. Yang, X. H.; Ling, F. L.; Su, J. F.; Zi, X. R.; Zhang, H.; Zhang, H. J.; Li, J.; Zhou, M.; Wang, Y. Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction. Appl. Catal. B: Environ. 2020, 264, 118477.

    CAS  Google Scholar 

  115. Ding, J. Y.; Hou, X. H.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. Inorg. Chem. Commun. 2023, 151, 110621.

    CAS  Google Scholar 

  116. Li, X. R.; Li, Y. P.; Wang, C. L.; Xue, H. G.; Pang, H.; Xu, Q. A 3D hierarchical electrocatalyst: Core–shell Cu@Cu(OH)2 nanorods/MOF octahedra supported on N-doped carbon for oxygen evolution reaction. Nano Res. 2023, 16, 8012–8017.

    CAS  Google Scholar 

  117. Wang, T. W.; Gao, S. S.; Wei, T. R.; Qin, Y. J.; Zhang, S. S.; Ding, J. Y.; Liu, Q.; Luo, J.; Liu, X. J. Co nanoparticles confined in mesoporous Mo/N co-doped polyhedral carbon frameworks towards high-efficiency oxygen reduction. Chem.—Eur. J. 2023, 29, e202204034.

    CAS  Google Scholar 

  118. Hou, J. R.; Peng, X. Y.; Sun, J. Q.; Zhang, S. S.; Liu, Q.; Wang, X. Z.; Luo, J.; Liu, X. J. Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS2 nanowire arrays. Inorg. Chem. Front. 2022, 9, 3047–3058.

    CAS  Google Scholar 

  119. Liu, H. M.; Lang, X. Y.; Zhu, C.; Timoshenko, J.; Rüscher, M.; Bai, L. C.; Guijarro, N.; Yin, H. B.; Peng, Y.; Li, J. H. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angee. Chem., Int. Ed. 2022, 61, e202202556.

    CAS  Google Scholar 

  120. Yuan, X. B.; Li, H. Y.; Fan, J.; Zhang, L.; Ran, F.; Feng, M. L.; Li, P. Y.; Kong, W. X.; Chen, S. J.; Zang, Z. G. et al. Enhanced p-type conductivity of NiOx films with divalent Cd ion doping for efficient inverted perovskite solar cells. ACS Appl. Mater. Interfaces 2022, 14, 17434–17443.

    CAS  Google Scholar 

  121. Fan, X. Y.; Zhao, D. L.; Deng, Z. Q.; Zhang, L. C.; Li, J.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Zheng, D. D.; Wang, Y. et al. Constructing Co@TiO2 nanoarray heterostructure with Schottky contact for selective electrocatalytic nitrate reduction to ammonia. Small 2023, 19, e2208036.

    Google Scholar 

  122. Li, Z. X.; Hu, M. L.; Wang, P.; Liu, J. H.; Yao, J. S.; Li, C. Y. Heterojunction catalyst in electrocatalytic water splitting. Coord. Chem. Rev. 2021, 439, 213953.

    CAS  Google Scholar 

  123. Pan, S. Y.; Yu, X. X.; Ling, Y.; Yang, Z. H. Stable and efficient hydrogen evolution reaction catalyzed by NiO-Rh2P heterostructure electrocatalyst. Catal. Commun. 2022, 163, 106404.

    CAS  Google Scholar 

  124. Wang, K.; Guo, W. L.; Yan, S. C.; Song, H. Z.; Shi, Y. Hierarchical Co-FeS2/CoS2 heterostructures as a superior bifunctional electrocatalyst. RSC Adv. 2018, 8, 28684–28691.

    CAS  Google Scholar 

  125. Liu, D.; Lv, Z. P.; Dang, J.; Ma, W. S.; Jian, K. L.; Wang, M.; Huang, D. J.; Tian, W. Q. Nitrogen-doped MoS2/Ti3C2Tx heterostructures as ultra-efficient alkaline HER electrocatalysts. Inorg. Chem. 2021, 60, 9932–9940.

    CAS  Google Scholar 

  126. Chu, K.; Luo, Y. J.; Shen, P.; Li, X. C.; Li, Q. Q.; Guo, Y. L. Unveiling the synergy of O-vacancy and heterostructure over MoO3_x/MXene for N2 electroreduction to NH3. Adv. Energy Mater. 2022, 12, 2103022.

    CAS  Google Scholar 

  127. Kim, D.; Shin, D.; Heo, J.; Lim, H.; Lim, J. A.; Jeong, H. M.; Kim, B. S.; Heo, I.; Oh, I.; Lee, B. et al. Unveiling electrode–electrolyte design-based NO reduction for NH3 synthesis. ACS Energy Lett. 2020, 5, 3647–3656.

    CAS  Google Scholar 

  128. Xu, X.; Dai, J. X.; Guo, X.; Qian, C.; Zhang, P.; Duan, Y. X.; Tian, Y. H. Effective N2 capture by aryl cations at ambient temperature and pressure. Phys. Chem. Chem. Phys. 2021, 23, 10763–10767.

    CAS  Google Scholar 

  129. Zhang, W. Q.; Qin, X. H.; Wei, T. R.; Liu, Q.; Luo, J.; Liu, X. J. Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. J. Colloid Interface Sci. 2023, 638, 650–657.

    CAS  Google Scholar 

  130. Jang, D.; Maeng, J.; Kim, J.; Han, H.; Park, G. H.; Ha, J.; Shin, D.; Hwang, Y. J.; Kim, W. B. Boosting electrocatalytic nitrate reduction reaction for ammonia synthesis by plasma-induced oxygen vacancies over MnCuO. Appl. Surf. Sci. 2023, 610, 155521.

    CAS  Google Scholar 

  131. Zhu, K. L.; Ma, J.; Chen, L.; Wu, F. F.; Xu, X. D.; Xu, M. Q.; Ye, W.; Wang, Y.; Gao, P.; Xiong, Y. J. Unraveling the role of interfacial water structure in electrochemical semihydrogenation of alkynes. ACS Catal. 2022, 12, 4840–4847.

    CAS  Google Scholar 

  132. Xu, M. Q.; Xie, Q. F.; Duan, D. L.; Zhang, Y.; Zhou, Y. H.; Zhou, H. Q.; Li, X. Y.; Wang, Y.; Gao, P.; Ye, W. Atomically dispersed Cu sites on dual-mesoporous N-doped carbon for efficient ammonia electrosynthesis from nitrate. ChemSusChem 2022, 15, e202200231.

    CAS  Google Scholar 

  133. Ding, J. Y.; Liu, W. X.; Zhang, S. S.; Luo, J.; Liu, X. J. A mini review: Recent advances in asymmetrically coordinated atom sites for high-efficiency hydrogen evolution reaction. Energies 2023, 16, 2664.

    CAS  Google Scholar 

  134. Zhang, S. C.; Liu, Q.; Tang, X. Y.; Zhou, Z. M.; Fan, T. Y.; You, Y. M.; Zhang, Q. C.; Zhang, S. S.; Luo, J.; Liu, X. J. Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes. Front. Chem. Sci. Eng. 2023, 17, 726–734.

    CAS  Google Scholar 

  135. Meng, G.; Cao, H. J.; Wei, T. R.; Liu, Q.; Fu, J. T.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ru clusters toward an efficient and durable hydrogen oxidation reaction. Chem. Commun. 2022, 58, 11839–11842.

    CAS  Google Scholar 

  136. Zhang, H.; Luo, Y.; Chu, P. K.; Liu, Q.; Liu, X. J.; Zhang, S. S.; Luo, J.; Wang, X. Z.; Hu, G. Z. Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. J. Alloys Compd. 2022, 922, 166113.

    CAS  Google Scholar 

  137. Liang, J.; Zhou, Q.; Mou, T.; Chen, H. Y.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Alshehri, A. A.; Gong, F. et al. FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Res. 2022, 15, 4008–4013.

    CAS  Google Scholar 

  138. Zhang, H.; Wei, T. R.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Hu, G. Z.; Luo, J.; Liu, X. J. Recent progress in metal phosphorous chalcogenides: Potential high-performance electrocatalysts. Small 2023, 19, 2207249.

    CAS  Google Scholar 

  139. Liu, Q.; Lin, Y. T.; Gu, S.; Cheng, Z. Q.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Alshehri, A. A.; Hamdy, M. S. et al. Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst. Nano Res. 2022, 15, 7134–7138.

    CAS  Google Scholar 

  140. Chen, K.; Wang, G. H.; Guo, Y. L.; Ma, D. W.; Chu, K. Iridium single-atom catalyst for highly efficient NO electroreduction to NH3. Nano Res., in press, https://doi.org/10.1007/s12274-023-5556-7.

  141. Wang, R.; Wu, Q. F.; Wu, M. J.; Zheng, J. X.; Cui, J.; Kang, Q.; Qi, Z. B.; Ma, J. D.; Wang, Z. C.; Liang, H. F. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Res. 2022, 15, 7227–7233.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22075211, 22109118, 22275166, 21601136, and 51971157), Tianjin Science Fund for Distinguished Young Scholars (No. 19JCJQJC61800), Shenzhen Science and Technology Program (Nos. JCYJ20210324123202008, JCYJ20210324115412035, and ZDSYS20210813095534001), and Guangdong Foundation for Basic and Applied Basic Research Program (No. 2021A1515110880).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxian Liu, Gaocan Qi or Xijun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Lian, K., Liu, W. et al. Engineering active sites of cathodic materials for high-performance Zn-nitrogen batteries. Nano Res. 16, 9214–9230 (2023). https://doi.org/10.1007/s12274-023-5798-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5798-4

Keywords

Navigation