Skip to main content
Log in

A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development and utilization of marine blue energy has become the focus of current research. A drawstring triboelectric nanogenerator with modular electrodes (DS-TENG) is proposed to harvest wave energy. Motion displacement and water wave adaptability are improved by using the drawstring structure in the DS-TENG. Furthermore, the modular electrode design is applied to improve the durability and replaceability of the generation units. The rationality of the structure is verified by theoretical analysis, and performance experiments on the fundamental output, displacement and frequency, durability and application are carried out. The DS-TENG can achieve output performance of 98.03 nC, 3.63 µA, 238.50 V and 923.92 µW at 150 mm and 1.0 Hz. In addition, the performance drops by 6.11% after 110,000 cycles for DS-TENG durability. This paper will provide reference for the design of TENG that adapts to a wide range of wave heights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.

    Article  Google Scholar 

  2. Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

    Article  CAS  Google Scholar 

  3. Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

    Article  Google Scholar 

  4. Wang, Z. L. Catch wave power in floating nets. Nature 2017, 542, 159–160.

    Article  Google Scholar 

  5. Zhao, J. Q.; Zhen, G. W.; Liu, G. X.; Bu, T. Z.; Liu, W. B.; Fu, X. P.; Zhang, P.; Zhang, C.; Wang, Z. L. Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 2019, 61, 111–118.

    Article  CAS  Google Scholar 

  6. Ye, C. Y.; Dong, K.; An, J.; Yi, J.; Peng, X.; Ning, C.; Wang, Z. L. A Triboelectric-electromagnetic hybrid nanogenerator with broadband working range for wind energy harvesting and a self-powered wind speed sensor. ACS Energy Lett. 2021, 6, 1443–1452.

    Article  CAS  Google Scholar 

  7. Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

    Article  Google Scholar 

  8. Jing, Z. X.; Zhang, J. C.; Wang, J. L.; Zhu, M. K.; Wang, X. X.; Cheng, T. H.; Zhu, J. Y.; Wang, Z. L. 3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting hydrokinetic energy. Nano Res. 2022, 15, 5098–5104.

    Article  CAS  Google Scholar 

  9. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  10. Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.

    Article  Google Scholar 

  11. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

    Article  CAS  Google Scholar 

  12. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

    Article  CAS  Google Scholar 

  13. Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

    Article  CAS  Google Scholar 

  14. Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

    Article  CAS  Google Scholar 

  15. Zhang, N.; Qin, C.; Feng, T. X.; Li, J.; Yang, Z. R.; Sun, X. P.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics. Nano Res. 2020, 13, 1903–1907.

    Article  Google Scholar 

  16. Guo, H. Y.; Chen, J.; Yeh, M. H.; Fan, X.; Wen, Z.; Li, Z. L.; Hu, C. G.; Wang, Z. L. An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano 2015, 9, 5577–5584.

    Article  CAS  Google Scholar 

  17. Xu, L.; Jiang, T.; Lin, P.; Shao, J. J.; He, C.; Zhong, W.; Chen, X. Y.; Wang, Z. L. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 2018, 12, 1849–1858.

    Article  CAS  Google Scholar 

  18. Feng, Y. W.; Liang, X.; An, J.; Jiang, T.; Wang, Z. L. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625.

    Article  CAS  Google Scholar 

  19. Pan, L.; Wang, J. Y.; Wang, P. H.; Gao, R. J.; Wang, Y. C.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062–4073.

    Article  CAS  Google Scholar 

  20. Han, J. J.; Liu, Y.; Feng, Y. W.; Jiang, T.; Wang, Z. L. Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring. Adv. Energy Mater. 2023, 13, 2203219.

    Article  CAS  Google Scholar 

  21. Li, Y. H.; Guo, Z. T.; Zhao, Z. H.; Gao, Y. K.; Yang, P. Y.; Qiao, W. Y.; Zhou, L. L.; Wang, J.; Wang, Z. L. Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting. Appl. Energy 2023, 336, 120792.

    Article  Google Scholar 

  22. Cheng, P.; Liu, Y. N.; Wen, Z.; Shao, H. Y.; Wei, A. M.; Xie, X. K.; Chen, C.; Yang, Y. Q.; Peng, M. F.; Zhuo, Q. Q. et al. Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 2018, 54, 156–162.

    Article  Google Scholar 

  23. Chen, B. D.; Tang, W.; He, C.; Deng, C. R.; Yang, L. J.; Zhu, L. P.; Chen, J.; Shao, J. J.; Liu, L.; Wang, Z. L. Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 2018, 21, 88–97.

    Article  CAS  Google Scholar 

  24. Yuan, Z. Q.; Wang, C. F.; Xi, J. G.; Han, X.; Li, J.; Han, S. T.; Gao, W. C.; Pan, C. F. Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy. ACS Energy Lett. 2021, 6, 2809–2816.

    Article  CAS  Google Scholar 

  25. Wang, Y.; Liu, X. Y.; Wang, Y. W.; Wang, H.; Wang, H.; Zhang, S. L.; Zhao, T. C.; Xu, M. Y.; Wang, Z. L. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano 2021, 15, 15700–15709.

    Article  CAS  Google Scholar 

  26. Wu, Y.; Zeng, Q. X.; Tang, Q.; Liu, W. L.; Liu, G. L.; Zhang, Y.; Wu, J.; Hu, C. G.; Wang, X. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 2020, 67, 104205.

    Article  CAS  Google Scholar 

  27. Zhao, T. C.; Xu, M. Y.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z. L. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 2021, 88, 106199.

    Article  CAS  Google Scholar 

  28. Zhang, C. G.; Zhou, L. L.; Cheng, P.; Liu, D.; Zhang, C. L.; Li, X. Y.; Li, S. X.; Wang, J.; Wang, Z. L. Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Adv. Energy Mater. 2021, 11, 2003616.

    Article  CAS  Google Scholar 

  29. Qu, Z. G.; Huang, M. K.; Chen, C. X.; An, Y.; Liu, H. Z.; Zhang, Q. P.; Wang, X. P.; Liu, Y.; Yin, W. L.; Li, X. F. Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting. Adv. Funct. Mater. 2022, 32, 2202048.

    Article  CAS  Google Scholar 

  30. Liu, L.; Shi, Q. F.; Lee, C. A novel hybridized blue energy harvester aiming at all-weather IoT applications. Nano Energy 2020, 76, 105052.

    Article  CAS  Google Scholar 

  31. Zhang, S.; Jing, Z. X.; Wang, X. X.; Zhu, M. K.; Yu, X.; Zhu, J. Y.; Cheng, T. H.; Zhao, H. W.; Wang, Z. L. Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting. Nano Res. 2023, 16, 466–472.

    Article  CAS  Google Scholar 

  32. Yin, M. F.; Lu, X. H.; Qiao, G. D.; Xu, Y. H.; Wang, Y. Q.; Cheng, T. H.; Wang, Z. L. Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Adv. Energy Mater. 2020, 10, 2000627.

    Article  CAS  Google Scholar 

  33. Rui, P. S.; Zhang, W.; Zhong, Y. M.; Wei, X. X.; Guo, Y. C.; Shi, S. W.; Liao, Y. L.; Cheng, J.; Wang, P. H. High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy 2020, 74, 104937.

    Article  CAS  Google Scholar 

  34. Zhao, B.; Li, Z. H.; Liao, X. Q.; Qiao, L. F.; Li, Y. R.; Dong, S. L.; Zhang, Z. N.; Zhang, B. C. A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy 2021, 89, 106381.

    Article  CAS  Google Scholar 

  35. Pang, H.; Feng, Y. W.; An, J.; Chen, P. F.; Han, J. J.; Jiang, T.; Wang, Z. L. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 2021, 31, 2106398.

    Article  CAS  Google Scholar 

  36. Qian, P.; Feng, B.; Wen, H. S.; Jiang, X.; Ying, Y.; Si, Y. L.; Zhang, D. H. Maximum power point tracking for triboelectric nanogenerator based wave energy converters. Nano Energy 2022, 98, 107249.

    Article  CAS  Google Scholar 

  37. Li, J. P.; Hu, Y. L.; Wang, X. N.; He, L. D.; Ma, J. J.; Wan, N.; Wen, J. M.; Cheng, T. H. A bow-drill structured triboelectric nanogenerator for marine ranching monitoring. Adv. Mater. Technol. 2023, 8, 2201471.

    Article  CAS  Google Scholar 

  38. Zhao, D.; Yu, X.; Wang, J. L.; Gao, Q.; Wang, Z. J.; Cheng, T. H.; Wang, Z. L. A standard for normalizing the outputs of triboelectric nanogenerators in various modes. Energy Environ. Sci. 2022, 15, 3901–3911.

    Article  Google Scholar 

  39. Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

    Article  Google Scholar 

  40. Zhao, D.; Yu, X.; Wang, Z. J.; Wang, J. L.; Li, X.; Wang, Z. L.; Cheng, T. H. Universal equivalent circuit model and verification of current source for triboelectric nanogenerator. Nano Energy 2021, 89, 106335.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors were grateful for the support from the National Key R&D Project from Minister of Science and Technology (Nos. 2021YFA1201604 & 2021YFA1201601) and the Beijing Natural Science Foundation (No. 3222023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianming Wen, Zhong Lin Wang or Tinghai Cheng.

Electronic Supplementary Material

Supplementary material, approximately 13.9 MB.

Supplementary material, approximately 11.2 MB.

Supplementary material, approximately 4.16 MB.

A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Li, H., Wang, J. et al. A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy. Nano Res. 16, 10931–10937 (2023). https://doi.org/10.1007/s12274-023-5796-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5796-6

Keywords

Navigation