Skip to main content
Log in

The role of aromatic residues in controlling the supramolecular chirality of short amphiphilic peptides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although the relationship between molecular and supramolecular chirality remains elusive, the existing results have demonstrated the vital role of hydrophilic motifs in controlling the supramolecular handedness of peptide nanofibrils compared with hydrophobic ones. However, unlike conventional hydrophobic residues, we speculate that aromatic hydrophobic residues are mostly likely to play a unique role in regulating the supramolecular handedness because the π−π stacking interactions of their side chains are directional like hydrogen bonding and can direct high levels of self-assembly due to the geometric confining of aromatic rings. To confirm this hypothesis, we here design a series of amphiphilic short peptides, with their hydrophobic motifs being composed of aromatic residues. Their short lengths not only favor their structural stability, synthesis, and sequence variation but also enable us to readily link their molecular and supramolecular structures. Through the combination of experiments and theoretical simulations, we demonstrate that the peptides containing L-form aromatic residues form left-handed nanofibrils while those containing D-form aromatic residues assemble into right-handed ones, irrespective of the chirality of their C-terminal hydrophilic residue. Theoretical calculations revealed that the stacking of aromatic side chains between β-strands directed the twisting direction of the β-sheets formed, with L- and D-form phenylalanine side chains stacking in a clockwise and anti-clockwise way, and more ordered and stronger aromatic stacking for homochiral peptides facilitated the formation of nanofibrils with a marked tubular feature. This study has bridged the knowledge gap in our understanding of how aromatic residues affect the supramolecular chirality of short peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feringa, B. L.; van Delden, R. A. Absolute asymmetric synthesis: The origin, control, and amplification of chirality. Angew. Chem., Int. Ed. 1999, 38, 3418–3438.

    CAS  Google Scholar 

  2. Liu, G. F.; Zhang, D.; Feng, C. L. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels. Angew. Chem., Int. Ed. 2014, 53, 7789–7793.

    CAS  Google Scholar 

  3. Harper, J. D.; Lieber, C. M.; Lansbury, P. T. Jr. Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-β protein. Chem. Biol. 1997, 4, 951–959.

    CAS  Google Scholar 

  4. Goldsbury, C. S.; Cooper, G. J. S.; Goldie, K. N.; Müller, S. A.; Saafi, E. L.; Gruijters, W. T. M.; Misur, M. P.; Engel, A.; Aebi, U.; Kistler, J. Polymorphic fibrillar assembly of human amylin. J. Struct. Biol. 1997, 119, 17–27.

    CAS  Google Scholar 

  5. Jiménez, J. L.; Nettleton, E. J.; Bouchard, M.; Robinson, C. V.; Dobson, C. M.; Saibil, H. R. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA 2002, 99, 9196–9201.

    Google Scholar 

  6. Bedrood, S.; Li, Y. Y.; Isas, J. M.; Hegde, B. G.; Baxa, U.; Haworth, I. S.; Langen, R. Fibril structure of human islet amyloid polypeptide. J. Biol. Chem. 2012, 287, 5235–5241.

    CAS  Google Scholar 

  7. Schmidt, A.; Annamalai, K.; Schmidt, M.; Grigorieff, N.; Fändrich, M. Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril. Proc. Natl. Acad. Sci. USA 2016, 113, 6200–6205.

    CAS  Google Scholar 

  8. Close, W.; Neumann, M.; Schmidt, A.; Hora, M.; Annamalai, K.; Schmidt, M.; Reif, B.; Schmidt, V.; Grigorieff, N.; Fändrich, M. Physical basis of amyloid fibril polymorphism. Nat. Commun. 2018, 9, 699.

    Google Scholar 

  9. Rubin, N.; Perugia, E.; Goldschmidt, M.; Fridkin, M.; Addadi, L. Chirality of amyloid suprastructures. J. Am. Chem. Soc. 2008, 130, 4602–4603.

    CAS  Google Scholar 

  10. Kurouski, D.; Dukor, R. K.; Lu, X. F.; Nafie, L. A.; Lednev, I. K. Normal and reversed supramolecular chirality of insulin fibrils probed by vibrational circular dichroism at the protofilament level of fibril structure. Biophys. J. 2012, 103, 522–531.

    CAS  Google Scholar 

  11. Kurouski, D.; Lu, X. F.; Popova, L.; Wan, W.; Shanmugasundaram, M.; Stubbs, G.; Dukor, R. K.; Lednev, I. K.; Nafie, L. A. Is supramolecular filament chirality the underlying cause of major morphology differences in amyloid fibrils. J. Am. Chem. Soc. 2014, 136, 2302–2312.

    CAS  Google Scholar 

  12. Usov, I.; Adamcik, J.; Mezzenga, R. Polymorphism complexity and handedness inversion in serum albumin amyloid fibrils. ACS Nano 2013, 7, 10465–10474.

    CAS  Google Scholar 

  13. Rubin, N.; Perugia, E.; Wolf, S. G.; Klein, E.; Fridkin, M.; Addadi, L. Relation between serum amyloid A truncated peptides and their suprastructure chirality. J. Am. Chem. Soc. 2010, 132, 4242–4248.

    CAS  Google Scholar 

  14. Lara, C.; Reynolds, N. P.; Berryman, J. T.; Xu, A. Q.; Zhang, A. F.; Mezzenga, R. ILQINS hexapeptide, identified in lysozyme left-handed helical ribbons and nanotubes, forms right-handed helical ribbons and crystals. J. Am. Chem. Soc. 2014, 136, 4732–4739.

    CAS  Google Scholar 

  15. Reynolds, N. P.; Adamcik, J.; Berryman, J. T.; Handschin, S.; Zanjani, A. A. H.; Li, W.; Liu, K.; Zhang, A. F.; Mezzenga, R. Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides. Nat. Commun. 2017, 8, 1338.

    Google Scholar 

  16. Wang, M.; Zhou, P.; Wang, J. Q.; Zhao, Y. R.; Ma, H. C.; Lu, J. R.; Xu, H. Left or right: How does amino acid chirality affect the handedness of nanostructures self-assembled from short amphiphilic peptides. J. Am. Chem. Soc. 2017, 139, 4185–4194.

    CAS  Google Scholar 

  17. Fu, Y. T.; Li, B. Z.; Huang, Z. B.; Li, Y.; Yang, Y. G. Terminal is important for the helicity of the self-assemblies of dipeptides derived from alanine. Langmuir 2013, 29, 6013–6017.

    CAS  Google Scholar 

  18. Gazit, E. A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J. 2002, 16, 77–83.

    CAS  Google Scholar 

  19. Reches, M.; Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 2003, 300, 625–627.

    CAS  Google Scholar 

  20. Mehta, A. K.; Lu, K.; Childers, W. S.; Liang, Y.; Dublin, S. N.; Dong, J. J.; Snyder, J. P.; Pingali, S. V.; Thiyagarajan, P.; Lynn, D. G. Facial symmetry in protein self-assembly. J. Am. Chem. Soc. 2008, 130, 9829–9835.

    CAS  Google Scholar 

  21. Smith, A. M.; Williams, R. J.; Tang, C.; Coppo, P.; Collins, R. F.; Turner, M. L.; Saiani, A.; Ulijn, R. V. Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π−π interlocked β-sheets. Adv. Mater. 2008, 20, 37–41.

    CAS  Google Scholar 

  22. Li, J.; Wang, J. Q.; Zhao, Y. R.; Zhou, P.; Carter, J.; Li, Z. Y.; Waigh, T. A.; Lu, J. R.; Xu, H. Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coord. Chem. Rev. 2020, 421, 213418.

    CAS  Google Scholar 

  23. Wang, M. H.; Zhao, Y. R.; Zhang, L. M.; Deng, J.; Qi, K.; Zhou, P.; Ma, X. Y.; Wang, D.; Li, Z.; Wang, J. Q. et al. Unexpected role of achiral glycine in determining the suprastructural handedness of peptide nanofibrils. ACS Nano 2021, 15, 10328–10341.

    CAS  Google Scholar 

  24. Wang, F. B.; Gnewou, O.; Solemanifar, A.; Conticello, V. P.; Egelman, E. H. Cryo-EM of helical polymers. Chem. Rev. 2022, 122, 14055–14065.

    CAS  Google Scholar 

  25. Usov, I.; Mezzenga, R. FiberApp: An open-source software for tracking and analyzing polymers, filaments, biomacromolecules, and fibrous objects. Macromolecules 2015, 48, 1269–1280.

    CAS  Google Scholar 

  26. Levine, H. Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci. 1993, 2, 404–410.

    CAS  Google Scholar 

  27. Biancalana, M.; Makabe, K.; Koide, A.; Koide, S. Molecular mechanism of thioflavin-T binding to the surface of β-rich peptide self-assemblies. J. Mol. Biol. 2009, 385, 1052–1063.

    CAS  Google Scholar 

  28. Pelton, J. T.; McLean, L. R. Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem. 2000, 277, 167–176.

    CAS  Google Scholar 

  29. Marchesan, S.; Easton, C. D.; Kushkaki, F.; Waddington, L.; Hartley, P. G. Tripeptide self-assembled hydrogels: Unexpected twists of chirality. Chem. Commun. 2012, 48, 2195–2197.

    CAS  Google Scholar 

  30. Marchesan, S.; Easton, C. D.; Styan, K. E.; Waddington, L. J.; Kushkaki, F.; Goodall, L.; McLean, K. M.; Forsythe, J. S.; Hartley, P. G. Chirality effects at each amino acid position on tripeptide self-assembly into hydrogel biomaterials. Nanoscale 2014, 6, 5172–5180.

    CAS  Google Scholar 

  31. Lee, N. R.; Bowerman, C. J.; Nilsson, B. L. Effects of varied sequence pattern on the self-assembly of amphipathic peptides. Biomacromolecules 2013, 14, 3267–3277.

    CAS  Google Scholar 

  32. Lin, S. W.; Li, Y.; Li, B. Z.; Yang, Y. G. Control of the handedness of self-assemblies of dipeptides by the chirality of phenylalanine and steric hindrance of phenylglycine. Langmuir 2016, 32, 7420–7426.

    CAS  Google Scholar 

  33. Behanna, H. A.; Donners, J. J. J. M.; Gordon, A. C.; Stupp, S. I. Coassembly of amphiphiles with opposite peptide polarities into nanofibers. J. Am. Chem. Soc. 2005, 127, 1193–1200.

    CAS  Google Scholar 

  34. Knaapila, M.; Almásy, L.; Garamus, V. M.; Ramos, M. L.; Justino, L. L. G.; Galbrecht, F.; Preis, E.; Scherf, U.; Burrows, H. D.; Monkman, A. P. An effect of side chain length on the solution structure of poly(9, 9-dialkylfluorene)s in toluene. Polymer 2008, 49, 2033–2038.

    CAS  Google Scholar 

  35. Zhao, Y. R.; Hu, X. Z.; Zhang, L. M.; Wang, D.; King, S. M.; Rogers, S. E.; Wang, J. Q.; Lu, J. R.; Xu, H. Monolayer wall nanotubes self-assembled from short peptide bolaamphiphiles. J. Colloid Interface Sci. 2021, 583, 553–562.

    CAS  Google Scholar 

  36. Ma, X. Y.; Zhao, Y. R.; He, C. Y.; Zhou, X.; Qi, H.; Wang, Y.; Chen, C. X.; Wang, D.; Li, J.; Ke, Y. B. et al. Ordered packing of β-sheet nanofibrils into nanotubes: Multi-hierarchical assembly of designed short peptides. Nano Lett. 2021, 21, 10199–10207.

    CAS  Google Scholar 

  37. Lu, K.; Jacob, J.; Thiyagarajan, P.; Conticello, V. P.; Lynn, D. G. Exploiting amyloid fibril lamination for nanotube self-assembly. J. Am. Chem. Soc. 2003, 125, 6391–6393.

    CAS  Google Scholar 

  38. Zhao, Y. R.; Yang, W.; Wang, D.; Wang, J. Q.; Li, Z. Y.; Hu, X. Z.; King, S.; Rogers, S.; Lu, J. R.; Xu, H. Controlling the diameters of nanotubes self-assembled from designed peptide bolaphiles. Small 2018, 14, 1703216.

    Google Scholar 

  39. da Silva, E. R.; Alves, W. A.; Castelletto, V.; Reza, M.; Ruokolainen, J.; Hussain, R.; Hamley, I. W. Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile. Chem. Commun. 2015, 51, 11634–11637.

    CAS  Google Scholar 

  40. Sunde, M.; Blake, C. C. F. From the globular to the fibrous state: Protein structure and structural conversion in amyloid formation. Q. Rev. Biophys. 1998, 31, 1–39.

    CAS  Google Scholar 

  41. Pashuck, E. T.; Stupp, S. I. Direct observation of morphological tranformation from twisted ribbons into helical ribbons. J. Am. Chem. Soc. 2010, 132, 8819–8821.

    CAS  Google Scholar 

  42. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    CAS  Google Scholar 

  43. Jorgensen, W. L.; Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666.

    CAS  Google Scholar 

  44. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236.

    CAS  Google Scholar 

  45. Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271.

    CAS  Google Scholar 

  46. Mayans, E.; Casanovas, J.; Gil, A. M.; Jiménez, A. I.; Cativiela, C.; Puiggalí, J.; Alemán, C. Diversity and hierarchy in supramolecular assemblies of triphenylalanine: From laminated helical ribbons to toroids. Langmuir 2017, 33, 4036–4048.

    CAS  Google Scholar 

  47. Lu, T.; Chen, Q. X. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems. J. Comput. Chem. 2022, 43, 539–555.

    CAS  Google Scholar 

  48. Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (Nos. 22172193, 22072181, and U1832108), a joint Innovate UK-Syngenta funded project under knowledge transfer partnership (No. KTP12697) and an EPSRC IAA 377 grant (No. R128362) with Arxada. We acknowledge the use of the resources of the China Spallation Neutron Source in Dongguan of Guangdong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiqian Wang or Hai Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Qi, K., Li, J. et al. The role of aromatic residues in controlling the supramolecular chirality of short amphiphilic peptides. Nano Res. 16, 12230–12237 (2023). https://doi.org/10.1007/s12274-023-5783-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5783-y

Keywords

Navigation