Skip to main content
Log in

Shape-dependence in seeded-growth of Pd-Cu solid solution from Pd nanostructure towards methanol oxidation electrocatalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ultrathin Pd nanosheets (NSs) have great advantages in catalysis due to their large specific surface area and high percentage of under-coordinated atoms. However, the electrochemical performance still can be improved via composition-controllable growth of their solid solution. Herein, seeded alloying strategy was proposed to synthesize Pd-Cu solid solution from Pd NSs and Pd-Cu nanostructures with tunable molar ratios obtained by changing the amount of Cu precursor. As compared to the pristine Pd NSs, the Pd-Cu solid solution shows significantly enhanced methanol oxidation reaction (MOR) performance over those of Pd NSs and homemade Pd/C as the incorporation of Cu weakens the adsorption of CO intermediate on Pd in the MOR process. The choice of template is pivotal to the growth, as a shape-dependent behavior could be identified in the alloying of Cu with Pd nanosheets enclosed by {111} and {100} facets, Pd nanocubes enclosed by {100} facet, and Pd nano-tetrahedrons enclosed by {111} facet. The Pd-Cu solid solution with tunable composition can only be obtained from Pd NSs and the shape-dependent alloying process is mainly determined by the diffusion barrier and the minimum diffusion depth of the different facets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Google Scholar 

  2. Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

    CAS  Google Scholar 

  3. He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

    CAS  Google Scholar 

  4. Xue, J.; Han, G. T.; Ye, W. N.; Sang, Y. T.; Li, H. L.; Guo, P. Z.; Zhao, X. S. Structural regulation of PdCu2 nanoparticles and their electrocatalytic performance for ethanol oxidation. ACS Appl. Mater. Interfaces 2016, 8, 34497–34505.

    CAS  Google Scholar 

  5. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    Article  CAS  Google Scholar 

  6. Lou, W. H.; Ali, A.; Shen, P. K. Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. Nano Res. 2021, 15, 18–37.

    Google Scholar 

  7. Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

    CAS  Google Scholar 

  8. Guo, X. Y.; Hu, Z.; Lv, J. X.; Li, H.; Zhang, Q. H.; Gu, L.; Zhou, W.; Zhang, J. W.; Hu, S. Fine-tuning of Pd-Rh core-shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation. Nano Res. 2022, 15, 1288–1294.

    CAS  Google Scholar 

  9. Ma, L.; Chu, D.; Chen, R. R. Comparison of ethanol electrooxidation on Pt/C and Pd/C catalysts in alkaline media. Int. J. Hyd. Energy 2012, 37, 11185–11194.

    CAS  Google Scholar 

  10. Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Recent progress of ultrathin 2D Pd-based nanomaterials for fuel cell electrocatalysis. Small 2021, 17, 2005092.

    CAS  Google Scholar 

  11. Zhang, X. B.; Lian, C.; Chen, Z.; Chen, C.; Li, Y. D. Preparation of freestanding palladium nanosheets modified with gold nanoparticles at edges. Nano Res. 2018, 11, 4142–4148.

    CAS  Google Scholar 

  12. Han, A. L.; Zhang, Z. D.; Li, X. Y.; Wang, D. S.; Li, Y. D. Atomic thickness catalysts: Synthesis and applications. Small Methods 2020, 4, 2000248.

    CAS  Google Scholar 

  13. Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

    CAS  Google Scholar 

  14. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

    CAS  Google Scholar 

  15. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  16. Xie, H.; Chen, S. Q.; Liang, J. S.; Wang, T. Y.; Hou, Z. F.; Wang, H. L.; Chai, G. L.; Li, Q. Weakening intermediate bindings on CuPd/Pd core/shell nanoparticles to achieve Pt-like bifunctional activity for hydrogen evolution and oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2100883.

    CAS  Google Scholar 

  17. Zhang, K. W.; Wang, C.; You, H. M.; Zou, B.; Guo, S. Y.; Li, S. J.; Du, Y. K. Advanced plasmon-driven ethylene glycol oxidation over 3D ultrathin lotus-like PdCu nanosheets. Chem. Eng. J. 2022, 438, 135666.

    CAS  Google Scholar 

  18. Chen, Y. J.; Pei, J. J.; Chen, Z.; Li, A.; Ji, S. F.; Rong, H. P.; Xu, Q.; Wang, T.; Zhang, A. J.; Tang, H. L. et al. Pt atomic layers with tensile strain and rich defects boost ethanol electrooxidation. Nano Lett. 2022, 22, 7563–7571.

    CAS  Google Scholar 

  19. Qiu, Y. J.; Zhang, J.; Jin, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 2021, 12, 5273.

    CAS  Google Scholar 

  20. Huang, W. J.; Kang, X. L.; Xu, C.; Zhou, J. H.; Deng, J.; Li, Y. G.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962.

    Google Scholar 

  21. Fan, J. C.; Yu, S. S.; Qi, K.; Liu, C.; Zhang, L.; Zhang, H. Y.; Cui, X. Q.; Zheng, W. T. Synthesis of ultrathin wrinkle-free PdCu alloy nanosheets for modulating d-band electrons for efficient methanol oxidation. J. Mater. Chem. A 2018, 6, 8531–8536.

    CAS  Google Scholar 

  22. Zhai, Y. L.; Zhu, Z. J.; Hong, W.; Dong, S. J. A facile strategy to PdCu bimetallic alloy nanosponges with highly porous features as a high-performance electrocatalytic activity for ethanol electrooxidation in an alkaline Medium. Electroanalysis 2015, 27, 1871–1875.

    CAS  Google Scholar 

  23. Fan, A. X.; Qin, C. L.; Zhao, R. X.; Sun, H. X.; Sun, H.; Dai, X. P.; Ye, J. Y.; Sun, S. G.; Lu, Y. H.; Zhang, X. Phosphorus-doping-tuned PtNi concave nanocubes with high-index facets for enhanced methanol oxidation reaction. Nano Res. 2022, 15, 6961–6968.

    CAS  Google Scholar 

  24. Iwasita, T. Electrocatalysis of methanol oxidation. Electrochim. Acta 2002, 47, 3663–3674.

    CAS  Google Scholar 

  25. Lv, H.; Lopes, A.; Xu, D. D.; Liu, B. Multimetallic hollow mesoporous nanospheres with synergistically structural and compositional effects for highly efficient ethanol electrooxidation. ACS Cent. Sci. 2018, 4, 1412–1419.

    CAS  Google Scholar 

  26. Wang, Y.; Wang, G. W.; Li, G. W.; Huang, B.; Pan, J.; Liu, Q.; Han, J. J.; Xiao, L.; Lu, J. T.; Zhuang, L. Pt-Ru catalyzed hydrogen oxidation in alkaline media: Oxophilic effect or electronic effect. Energy Environ. Sci. 2015, 8, 177–181.

    CAS  Google Scholar 

  27. Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.

    Google Scholar 

  28. Lv, H.; Sun, L. Z.; Xu, D. D.; Ma, Y. H.; Liu, B. When ternary PdCuP alloys meet ultrathin nanowires: Synergic boosting of catalytic performance in ethanol electrooxidation. Appl. Catal. B 2019, 253, 271–277.

    CAS  Google Scholar 

  29. Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.

    Google Scholar 

  30. Zhao, X. J.; Dai, L.; Qin, Q.; Pei, F.; Hu, C. Y.; Zheng, N. F. Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol. Small 2017, 13, 1602970.

    Google Scholar 

  31. Tran, N. T.; Liao, H. B.; Feng, X. L.; Xu, Z. Z.; Liedberg, B. Synthesis of highly branched hollow trimetallic PdAgCu nanoparticles. Nanotechnology 2020, 31, 185601.

    CAS  Google Scholar 

  32. Li, Y.; Yan, Y. C.; Li, Y. H.; Zhang, H.; Li, D. S.; Yang, D. R. Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. CrystEngComm 2015, 17, 1833–1838.

    CAS  Google Scholar 

  33. Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.

    CAS  Google Scholar 

  34. Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.

    CAS  Google Scholar 

  35. Yan, Y. C.; Shan, H.; Li, G.; Xiao, F.; Jiang, Y. Y.; Yan, Y. Y.; Jin, C. H.; Zhang, H.; Wu, J. B.; Yang, D. R. Epitaxial growth of multimetallic Pd@PtM (M = Ni, Rh, Ru) core–shell nanoplates realized by in situ-produced co from interfacial catalytic reactions. Nano Lett. 2016, 16, 7999–8004.

    CAS  Google Scholar 

  36. Chen, C. H.; Qian, N. K.; Li, J. J.; Li, X.; Yang, D. R.; Zhang, H. Facile synthesis of PdCuRu porous nanoplates as highly efficient electrocatalysts for hydrogen evolution reaction in alkaline medium. Metals 2021, 11, 1451.

    CAS  Google Scholar 

  37. Hu, S. Z.; Scudiero, L.; Ha, S. Electronic effect on oxidation of formic acid on supported Pd-Cu bimetallic surface. Electrochim. Acta 2012, 83, 354–358.

    CAS  Google Scholar 

  38. Chen, D.; Xu, L. L.; Liu, H.; Yang, J. Rough-surfaced bimetallic copper-palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction. Green Energy Environ. 2019, 4, 254–263.

    Google Scholar 

  39. Ren, M. J.; Zhou, Y.; Tao, F. F.; Zou, Z. Q.; Akins, D. L.; Yang, H. Controllable modification of the electronic structure of carbon-supported core–shell Cu@Pd catalysts for formic acid oxidation. J. Phys. Chem. C 2014, 118, 12669–12675.

    CAS  Google Scholar 

  40. Xiao, W. P.; Zhu, J.; Han, L. L.; Liu, S. F.; Wang, J.; Wu, Z. X.; Lei, W.; Xuan, C. J.; Xin, H. L.; Wang, D. L. Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR. Nanoscale 2016, 8, 14793–14802.

    CAS  Google Scholar 

  41. Jin, L. J.; Xu, H.; Chen, C. Y.; Shang, H. Y.; Wang, Y.; Wang, C.; Du, Y. K. Three-dimensional PdCuM (M = Ru, Rh, Ir) trimetallic alloy nanosheets for enhancing methanol oxidation electrocatalysis. ACS Appl. Mater. Interfaces 2019, 11, 42123–42130.

    CAS  Google Scholar 

  42. Gao, F.; Zhang, Y. P.; Ren, F. F.; Shiraishi, Y.; Du, Y. K. Universal surfactant-free strategy for self-standing 3D tremella-like Pd-M (M = Ag, Pb, and Au) nanosheets for superior alcohols electrocatalysis. Adv. Funct. Mater. 2020, 30, 2000255.

    CAS  Google Scholar 

  43. Wang, C. Y.; Chen, D. P.; Sang, X. H.; Unocic, R. R.; Skrabalak, S. E. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts. ACS Nano 2016, 10, 6345–6353.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was accomplished under the support of National Natural Science Foundation of Tianjin, China (No. 22175127) and Institute of Energy, Hefei Comprehensive National Science Center (No. 19KZS207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Hu.

Electronic Supplementary Material

12274_2023_5741_MOESM1_ESM.pdf

Shape-dependence in seeded-growth of Pd-Cu solid solution from Pd nanostructure towards methanol oxidation electrocatalyst

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, L., Li, H., Zhang, Y. et al. Shape-dependence in seeded-growth of Pd-Cu solid solution from Pd nanostructure towards methanol oxidation electrocatalyst. Nano Res. 16, 9116–9124 (2023). https://doi.org/10.1007/s12274-023-5741-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5741-8

Keywords

Navigation