Skip to main content
Log in

Coaxial fiber organic electrochemical transistor with high transconductance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fiber organic electrochemical transistors (OECTs) have received extensive attention in wearable and implantable biosensors because of their high flexibility and low working voltage. However, the transconductance of fiber OECTs is much lower compared with the planar counterparts, leading to low sensitivity. Here, we developed fiber OECTs in a coaxial configuration with microscale channel length to achieve the highest transconductance of 135 mS, which is one to two orders of magnitude higher than that of the state-of-the-art fiber OECTs. Coaxial fiber OECT based sensors showed high sensitivities of 12.78, 20.53 and 3.78 mA/decade to ascorbic acid, hydrogen peroxide and glucose, respectively. These fiber OECTs were woven into a fabric to monitor the glucose in sweat during exercise and implanted in mouse brain to detect ascorbic acid. This coaxial architectural design offers an effective way to promote the performance of fiber OECTs and realize highly sensitive detection of biochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, L.; Wang, L. Y.; Zhang, Y.; Pan, J.; Li, S. Y.; Sun, X. M.; Zhang, B.; Peng, H. S. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 2018, 28, 1804456.

    Article  Google Scholar 

  2. Yoon, J. H.; Kim, S. M.; Park, H. J.; Kim, Y. K.; Oh, D. X.; Cho, H. W.; Lee, K. G.; Hwang, S. Y.; Park, J.; Choi, B. G. Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids. Biosens. Bioelectron. 2020, 150, 111946.

    Article  CAS  Google Scholar 

  3. Wang, L. Y.; Xie, S. L.; Wang, Z. Y.; Liu, F.; Yang, Y. F.; Tang, C. Q.; Wu, X. Y.; Liu, P.; Li, Y. J.; Saiyin, H. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 2020, 4, 159–171.

    Article  CAS  Google Scholar 

  4. Qing, X.; Wang, Y. D.; Zhang, Y.; Ding, X. C.; Zhong, W. B.; Wang, D.; Wang, W. W.; Liu, Q. Z.; Liu, K.; Li, M. F. et al. Wearable fiber-based organic electrochemical transistors as a platform for highly sensitive dopamine monitoring. ACS Appl. Mater. Interfaces 2019, 11, 13105–13113.

    Article  CAS  Google Scholar 

  5. Yang, A. N.; Li, Y. Z.; Yang, C. X.; Fu, Y.; Wang, N. X.; Li, L.; Yan, F. Fabric organic electrochemical transistors for biosensors. Adv. Mater. 2018, 30, 1800051.

    Article  Google Scholar 

  6. Kim, Y.; Lim, T.; Kim, C. H.; Yeo, C. S.; Seo, K.; Kim, S. M.; Kim, J.; Park, S. Y.; Ju, S.; Yoon, M. H. Organic electrochemical transistor-based channel dimension-independent single-strand wearable sweat sensors. NPG Asia Mater. 2018, 10, 1086–1095.

    Article  Google Scholar 

  7. Zhang, Y.; Wang, Y. D.; Qing, X.; Wang, Y.; Zhong, W. B.; Wang, W. W.; Chen, Y. L.; Liu, Q. Z.; Li, M. F.; Wang, D. Fiber organic electrochemical transistors based on multi-walled carbon nanotube and polypyrrole composites for noninvasive lactate sensing. Anal. Bioanal. Chem. 2020, 412, 7515–7524.

    Article  CAS  Google Scholar 

  8. Wang, Y. D.; Zhou, Z.; Qing, X.; Zhong, W. B.; Liu, Q. Z.; Wang, W. W.; Li, M. F.; Liu, K.; Wang, D. Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection. Anal. Bioanal. Chem. 2016, 408, 5779–5787.

    Article  CAS  Google Scholar 

  9. Wang, Y. D.; Qing, X.; Zhou, Q.; Zhang, Y.; Liu, Q. Z.; Liu, K.; Wang, W. W.; Li, M. F.; Lu, Z. T.; Chen, Y. L. et al. The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing. Biosens. Bioelectron. 2017, 95, 138–145.

    Article  CAS  Google Scholar 

  10. Rivnay, J.; Leleux, P.; Ferro, M.; Sessolo, M.; Williamson, A.; Koutsouras, D. A.; Khodagholy, D.; Ramuz, M.; Strakosas, X.; Owens, R. M. et al. High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 2015, 1, e1400251.

    Article  Google Scholar 

  11. Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.

    Article  CAS  Google Scholar 

  12. Liang, Y. Y.; Brings, F.; Maybeck, V.; Ingebrandt, S.; Wolfrum, B.; Pich, A.; Offenhäusser, A.; Mayer, D. Tuning channel architecture of interdigitated organic electrochemical transistors for recording the action potentials of electrogenic cells. Adv. Funct. Mater. 2019, 29, 1902085.

    Article  Google Scholar 

  13. Wu, X. Y.; Feng, J. Y.; Deng, J.; Cui, Z. C.; Wang, L. Y.; Xie, S. L.; Chen, C. R.; Tang, C. Q.; Han, Z. Q.; Yu, H. B. et al. Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability. Sci. China Chem. 2020, 63, 1281–1288.

    Article  CAS  Google Scholar 

  14. Yang, Y. X.; Wei, X. F.; Zhang, N. N.; Zheng, J. J.; Chen, X.; Wen, Q.; Luo, X. X.; Lee, C. Y.; Liu, X. H.; Zhang, X. C. et al. A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun. 2021, 12, 4876.

    Article  CAS  Google Scholar 

  15. Cicoira, F.; Sessolo, M.; Yaghmazadeh, O.; DeFranco, J. A.; Yang, S. Y.; Malliaras, G. G. Influence of device geometry on sensor characteristics of planar organic electrochemical transistors. Adv. Mater. 2010, 22, 1012–1016.

    Article  CAS  Google Scholar 

  16. Lu, W. B.; Zu, M.; Byun, J. H.; Kim, B. S.; Chou, T. W. State of the art of carbon nanotube fibers: Opportunities and challenges. Adv. Mater. 2012, 24, 1805–1833.

    Article  CAS  Google Scholar 

  17. Kumar, A.; Pujar, R.; Gupta, N.; Tarafdar, S.; Kulkarni, G. U. Stress modulation in desiccating crack networks for producing effective templates for patterning metal network based transparent conductors. Appl. Phys. Lett. 2017, 111, 013502.

    Article  Google Scholar 

  18. Routh, A. F. Drying of thin colloidal films. Rep. Prog. Phys. 2013, 76, 046603.

    Article  Google Scholar 

  19. Rao, K. D. M.; Gupta, R.; Kulkarni, G. U. Fabrication of large area, high-performance, transparent conducting electrodes using a spontaneously formed crackle network as template. Adv. Mater. Interfaces 2014, 1, 1400090.

    Article  Google Scholar 

  20. Kim, Y. G.; Tak, Y. J.; Park, S. P.; Kim, H. J.; Kim, H. J. Structural engineering of metal-mesh structure applicable for transparent electrodes fabricated by self-formable cracked template. Nanomaterials 2017, 7, 214.

    Article  Google Scholar 

  21. Tao, Y.; Wang, Y.; Zhu, R. F.; Chen, Y. L.; Liu, X.; Li, M. F.; Yang, L. Y.; Wang, Y. D.; Wang, D. Fiber based organic electrochemical transistor integrated with molecularly imprinted membrane for uric acid detection. Talanta 2022, 238, 123055.

    Article  CAS  Google Scholar 

  22. Xi, X.; Wu, D. Q.; Ji, W.; Zhang, S. N.; Tang, W.; Su, Y. Z.; Guo, X. J.; Liu, R. L. Manipulating the sensitivity and selectivity of OECT-based biosensors via the surface engineering of carbon cloth gate electrodes. Adv. Funct. Mater. 2020, 30, 1905361.

    Article  CAS  Google Scholar 

  23. Bernards, D. A.; Macaya, D. J.; Nikolou, M.; DeFranco, J. A.; Takamatsu, S.; Malliaras, G. G. Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 2008, 18, 116–120.

    Article  CAS  Google Scholar 

  24. Lykkesfeldt, J.; Tveden-Nyborg, P. The pharmacokinetics of vitamin C. Nutrients 2019, 11, 2412.

    Article  CAS  Google Scholar 

  25. Tolosa, V. M.; Wassum, K. M.; Maidment, N. T.; Monbouquette, H. G. Electrochemically deposited iridium oxide reference electrode integrated with an electroenzymatic glutamate sensor on a multi-electrode arraymicroprobe. Biosens. Bioelectron. 2013, 42, 256–260.

    Article  CAS  Google Scholar 

  26. Demuru, S.; Huang, C. H.; Parvez, K.; Worsley, R.; Mattana, G.; Piro, B.; Noël, V.; Casiraghi, C.; Briand, D. All-inkjet-printed graphene-gated organic electrochemical transistors on polymeric foil as highly sensitive enzymatic biosensors. ACS Appl. Nano Mater. 2022, 5, 1664–1673.

    Article  CAS  Google Scholar 

  27. Ohayon, D.; Nikiforidis, G.; Savva, A.; Giugni, A.; Wustoni, S.; Palanisamy, T.; Chen, X. X.; Maria, I. P.; Di Fabrizio, E.; Costa, P. M. F. J. et al. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat. Mater. 2020, 19, 456–463.

    Article  CAS  Google Scholar 

  28. Chen, C.; Xie, Q. J.; Yang, D. W.; Xiao, H. L.; Fu, Y. C.; Tan, Y. M.; Yao, S. Z. Recent advances in electrochemical glucose biosensors: A review. RSC Adv. 2013, 3, 4473–4491.

    Article  CAS  Google Scholar 

  29. Zafar, H.; Channa, A.; Jeoti, V.; Stojanović, G. M. Comprehensive review on wearable sweat-glucose sensors for continuous glucose monitoring. Sensors 2022, 22, 638.

    Article  CAS  Google Scholar 

  30. Ait Yazza, A.; Blondeau, P.; Andrade, F. J. Simple approach for building high transconductance paper-based organic electrochemical transistor (OECT) for chemical sensing. ACS Appl. Electron. Mater. 2021, 3, 1886–1895.

    Article  CAS  Google Scholar 

  31. Sonner, Z.; Wilder, E.; Heikenfeld, J.; Kasting, G.; Beyette, F.; Swaile, D.; Sherman, F.; Joyce, J.; Hagen, J.; Kelley-Loughnane, N. et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 2015, 9, 031301.

    Article  CAS  Google Scholar 

  32. Zhao, J. Q.; Lin, Y. J.; Wu, J. B.; Nyein, H. Y. Y.; Bariya, M.; Tai, L. C.; Chao, M. H.; Ji, W. B.; Zhang, G.; Fan, Z. Y. et al. A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring. ACS Sens. 2019, 4, 1925–1933.

    Article  CAS  Google Scholar 

  33. Tang, C. Q.; Xie, S. L.; Wang, M. Y.; Feng, J. Y.; Han, Z. Q.; Wu, X. Y.; Wang, L. Y.; Chen, C. R.; Wang, J. J.; Jiang, L. P. et al. A fiber-shaped neural probe with alterable elastic moduli for direct implantation and stable electronic-brain interfaces. J. Mater. Chem. B 2020, 8, 4387–4394.

    Article  CAS  Google Scholar 

  34. Janzakova, K.; Ghazal, M.; Kumar, A.; Coffinier, Y.; Pecqueur, S.; Alibart, F. Dendritic organic electrochemical transistors grown by electropolymerization for 3D neuromorphic engineering. Adv. Sci. 2021, 8, 2102973.

    Article  CAS  Google Scholar 

  35. Fang, B.; Yan, J. M.; Chang, D.; Piao, J.; Ma, K. M.; Gu, Q.; Gao, P.; Chai, Y.; Tao, X. M. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat. Commun. 2022, 13, 2101.

    Article  CAS  Google Scholar 

  36. Zhang, L. S.; Andrew, T. Vapor-coated monofilament fibers for embroidered electrochemical transistor arrays on fabrics. Adv. Electron. Mater. 2018, 4, 1800271.

    Article  Google Scholar 

  37. Sarabia-Riquelme, R.; Andrews, R.; Anthony, J. E.; Weisenberger, M. C. Highly conductive wet-spun PEDOT: PSS fibers for applications in electronic textiles. J. Mater. Chem. C 2020, 8, 11618–11630.

    Article  CAS  Google Scholar 

  38. Hofmann, A. I.; Östergren, I.; Kim, Y.; Fauth, S.; Craighero, M.; Yoon, M. H.; Lund, A.; Müller, C. All-polymer conducting fibers and 3D prints via melt processing and templated polymerization. ACS Appl. Mater. Interfaces 2020, 12, 8713–8721.

    Article  CAS  Google Scholar 

  39. Shi, Z. N.; Xu, Z.; Hu, J.; Wei, W. W.; Zeng, X. R.; Zhao, W. W.; Lin, P. Ascorbic acid-mediated organic photoelectrochemical transistor sensing strategy for highly sensitive detection of heart-type fatty acid binding protein. Biosens. Bioelectron. 2022, 201, 113958.

    Article  CAS  Google Scholar 

  40. Tang, K.; Turner, C.; Case, L.; Mehrehjedy, A.; He, X. Y.; Miao, W. J.; Guo, S. Organic electrochemical transistor with molecularly imprinted polymer-modified gate for the real-time selective detection of dopamine. ACS Appl. Polym. Mater. 2022, 4, 2337–2345.

    Article  CAS  Google Scholar 

  41. Zhang, M.; Liao, C. Z.; Yao, Y. L.; Liu, Z. K.; Gong, F. F.; Yan, F. High-performance dopamine sensors based on whole-graphene solution-gated transistors. Adv. Funct. Mater. 2014, 24, 978–985.

    Article  CAS  Google Scholar 

  42. Liao, C. Z.; Zhang, M.; Niu, L. Y.; Zheng, Z. J.; Yan, F. Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors. J. Mater. Chem. B 2014, 2, 191–200.

    Article  CAS  Google Scholar 

  43. Gualandi, I.; Marzocchi, M.; Achilli, A.; Cavedale, D.; Bonfiglio, A.; Fraboni, B. Textile organic electrochemical transistors as a platform for wearable biosensors. Sci. Rep. 2016, 6, 33637.

    Article  CAS  Google Scholar 

  44. Zhang, L. J.; Wang, G. H.; Wu, D.; Xiong, C.; Zheng, L.; Ding, Y. S.; Lu, H. B.; Zhang, G. B.; Qiu, L. Z. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid. Biosens. Bioelectron. 2018, 100, 235–241.

    Article  CAS  Google Scholar 

  45. Gualandi, I.; Scavetta, E.; Mariani, F.; Tonelli, D.; Tessarolo, M.; Fraboni, B. All poly(3, 4-ethylenedioxythiophene) organic electrochemical transistor to amplify amperometric signals. Electrochim. Acta 2018, 268, 476–483.

    Article  CAS  Google Scholar 

  46. Wang, L.; Sun, Q. Z.; Zhang, L. R.; Wang, J.; Ren, G. Z.; Yu, L. Y. Z.; Wang, K. L.; Zhu, Y. M.; Lu, G.; Yu, H. D. Realizing ultrahigh transconductance in organic electrochemical transistor by Co-doping PEDOT: PSS with ionic liquid and dodecylbenzenesulfonate. Macromol. Rapid Commun. 2022, 43, 2200212.

    Article  CAS  Google Scholar 

  47. Tan, S. T. M.; Giovannitti, A.; Melianas, A.; Moser, M.; Cotts, B. L.; Singh, D.; McCulloch, I.; Salleo, A. High-gain chemically gated organic electrochemical transistor. Adv. Funct. Mater. 2021, 31, 2010868.

    Article  CAS  Google Scholar 

  48. Liao, C. Z.; Mak, C.; Zhang, M.; Chan, H. L. W.; Yan, F. Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing. Adv. Mater. 2015, 27, 676–681.

    Article  CAS  Google Scholar 

  49. Zhang, M.; Liao, C. Z.; Mak, C. H.; You, P.; Mak, C. L.; Yan, F. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci. Rep. 2015, 5, 8311.

    Article  CAS  Google Scholar 

  50. Guo, X.; Cao, Q. Q.; Liu, Y. W.; He, T.; Liu, J. W.; Huang, S.; Tang, H.; Ma, M. Organic electrochemical transistor for in situ detection of H2O2 released from adherent cells and its application in evaluating the in vitro cytotoxicity of nanomaterial. Anal. Chem. 2020, 92, 908–915.

    Article  CAS  Google Scholar 

  51. Strakosas, X.; Donahue, M. J.; Hama, A.; Braendlein, M.; Huerta, M.; Simon, D. T.; Berggren, M.; Malliaras, G. G.; Owens, R. M. Biostack: Nontoxic metabolite detection from live tissue. Adv. Sci. 2022, 9, 2101711.

    Article  CAS  Google Scholar 

  52. Fan, J. X.; Forero Pico, A. A.; Gupta, M. A functionalization study of aerosol jet printed organic electrochemical transistors (OECTs) for glucose detection. Mater. Adv. 2021, 2, 7445–7455.

    Article  CAS  Google Scholar 

  53. Lin, B. J.; Wang, M.; Zhao, C.; Wang, S. J.; Chen, K.; Li, X.; Long, Z. S.; Zhao, C. X.; Song, X. Y.; Yan, S. et al. Flexible organic integrated electronics for self-powered multiplexed ocular monitoring. npj Flex. Electron. 2022, 6, 77.

    Article  Google Scholar 

  54. Pappa, A. M.; Curto, V. F.; Braendlein, M.; Strakosas, X.; Donahue, M. J.; Fiocchi, M.; Malliaras, G. G.; Owens, R. M. Organic transistor arrays integrated with finger-powered microfluidics for multianalyte saliva testing. Adv. Healthc. Mater. 2016, 5, 2295–2302.

    Article  CAS  Google Scholar 

  55. Strakosas, X.; Huerta, M.; Donahue, M. J.; Hama, A.; Pappa, A. M.; Ferro, M.; Ramuz, M.; Rivnay, J.; Owens, R. M. Catalytically enhanced organic transistors for in vitro toxicology monitoring through hydrogel entrapment of enzymes. J. Appl. Polym. Sci. 2017, 134, 44483.

    Article  Google Scholar 

  56. Wustoni, S.; Savva, A.; Sun, R. F.; Bihar, E.; Inal, S. Enzyme-free detection of glucose with a hybrid conductive gel electrode. Adv. Mater. Interfaces 2019, 6, 1800928.

    Article  Google Scholar 

  57. Gualandi, I.; Tessarolo, M.; Mariani, F.; Arcangeli, D.; Possanzini, L.; Tonelli, D.; Fraboni, B.; Scavetta, E. Layered double hydroxide-modified organic electrochemical transistor for glucose and lactate biosensing. Sensors 2020, 20, 3453.

    Article  CAS  Google Scholar 

  58. Diacci, C.; Abedi, T.; Lee, J. W.; Gabrielsson, E. O.; Berggren, M.; Simon, D. T.; Niittylä, T.; Stavrinidou, E. Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. iScience 2021, 24, 101966.

    Article  CAS  Google Scholar 

  59. Meza, B. E.; Peralta, J. M.; Zorrilla, S. E. Rheological properties of a commercial food glaze material and their effect on the film thickness obtained by dip coating. J. Food Process Eng. 2015, 38, 510–516.

    Article  Google Scholar 

  60. Sapcharoenkun, C.; Klamchuen, A.; Kasamechonchung, P.; Iemsam-Arng, J. Role of rheological behavior of sunscreens containing nanoparticles on thin film preparation. Mater. Sci. Eng.: B 2020, 259, 114608.

    Article  CAS  Google Scholar 

  61. Ferro, L. M. M.; Merces, L.; de Camargo, D. H. S.; Bof Bufon, C. C. Ultrahigh-gain organic electrochemical transistor chemosensors based on self-curled nanomembranes. Adv. Mater. 2021, 33, 2101518.

    Article  CAS  Google Scholar 

  62. Bai, L. M.; Elósegui, C. G.; Li, W. Q.; Yu, P.; Fei, J. J.; Mao, L. Q. Biological applications of organic electrochemical transistors: Electrochemical biosensors and electrophysiology recording. Front. Chem. 2019, 7, 313.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, Nos. 52122310 and 22075050), Science and Technology Commission of Shanghai Municipality (STCSM, Nos. 21511104900 and 20JC1414902), China Postdoctoral Science Foundation (CPSF, Nos. VLH1717003, KLH1717015), Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01), ZJ Lab, and Shanghai Center for Brain Science and Brain-Inspired Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuemei Sun or Huisheng Peng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Feng, J., Shi, X. et al. Coaxial fiber organic electrochemical transistor with high transconductance. Nano Res. 16, 11885–11892 (2023). https://doi.org/10.1007/s12274-023-5722-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5722-y

Keywords

Navigation