Skip to main content
Log in

Heterogeneous assembling 3D free-standing Co@carbon membrane enabling efficient fluid and flexible zinc-air batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing an efficient, interface-rich, and free-standing non-noble-metal electrocatalyst is vital for the flexible zinc-air batteries (ZABs). Herein, a three-dimensional (3D) heterogeneous carbon-based flexible membrane was assembled by Co@carbon nanosheets/carbon nanotubes and hollow carbon nanofiber (Co@NS/CNT-CNF) as an efficient oxygen reduction reaction (ORR) catalyst with a positive half-wave potential of 0.846 V and a small Tafel slope of 79 mV·dec−1. Meanwhile, the Co@NS/CNT-CNF electrode also exhibits excellent open-circuit voltage, peak power density, and long-time cycling stability in liquid-state ZABs (1.605 V, 163 mW·cm−2, and 400 h) and flexible ZABs under flat/bending condition (1.47 V, 102 mW·cm−2, and 80 h). Such heterogeneous flexible membrane architecture not only optimizes the electrolyte infiltration, but also provides capacious possibility for O2 and electrolyte transfer. Meanwhile, work-function analyses coupled with density functional theory (DFT) results demonstrate that the electron transfer capability and metal—support interaction can be well optimized in the obtained Co@NS/CNT-CNF catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y. L.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H. B.; He, J. X.; Cui, S. Z.; Thomas, S. W. et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921.

    Google Scholar 

  2. Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–4395.

    CAS  Google Scholar 

  3. Liu, Y. Q.; He, K.; Chen, G.; Leow, W. R.; Chen, X. D. Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 2017, 117, 12893–12941.

    CAS  Google Scholar 

  4. Li, H.; Kelly, S.; Guevarra, D.; Wang, Z. B.; Wang, Y.; Haber, J. A.; Anand, M.; Gunasooriya, G. T. K. K.; Abraham, C. S.; Vijay, S. et al. Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nat. Catal. 2021, 4, 463–468.

    CAS  Google Scholar 

  5. Xu, Y. F.; Zhang, Y.; Guo, Z. Y.; Ren, J.; Wang, Y. G.; Peng, H. S. Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem., Int. Ed. 2015, 54, 15390–15394.

    CAS  Google Scholar 

  6. Liu, Y. R.; Liu, X. J.; Lv, Z. H.; Liu, R.; Li, L. H.; Wang, J. M.; Yang, W. X.; Jiang, X.; Feng, X.; Wang, B. Tuning the spin state of the iron center by bridge-bonded Fe-O-Ti ligands for enhanced oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202117617.

    CAS  Google Scholar 

  7. Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 2019, 31, 1802234.

    Google Scholar 

  8. Sievers, G. W.; Jensen, A. W.; Quinson, J.; Zana, A.; Bizzotto, F.; Oezaslan, M.; Dworzak, A.; Kirkensgaard, J. J. K.; Smitshuysen, T. E. L.; Kadkhodazadeh, S. et al. Self-supported Pt-CoO networks combining high specific activity with high surface area for oxygen reduction. Nat. Mater. 2021, 20, 208–213.

    CAS  Google Scholar 

  9. Luo, M. C.; Koper, M. T. M. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt (111). Nat. Catal. 2022, 5, 615–623.

    CAS  Google Scholar 

  10. Yang, W. X.; Liu, X. J.; Lv, H.; Jia, J. B. Atomic Fe & FeP nanoparticles synergistically facilitate oxygen reduction reaction of hollow carbon hybrids. J. Colloid Interface Sci. 2021, 583, 371–375.

    CAS  Google Scholar 

  11. Liu, X. J.; Liu, Y. R.; Yang, W. X.; Feng, X.; Wang, B. Controlled modification of axial coordination for transition-metal single-atom electrocatalyst. Chem.—Eur. J. 2022, 28, e202201471.

    CAS  Google Scholar 

  12. Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605–1612.

    CAS  Google Scholar 

  13. Chen, Z. Y.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W. B.; Han, L.; Guo, Y. Z. et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew. Chem., Int. Ed. 2021, 60, 25404–25410.

    CAS  Google Scholar 

  14. Chen, Z. Y.; Su, X. Z.; Ding, J.; Yang, N.; Zuo, W. B.; He, Q. Y.; Wei, Z. M.; Zhang, Q.; Huang, J.; Zhai, Y. M. Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Appl. Catal. B: Environ. 2022, 308, 121206.

    CAS  Google Scholar 

  15. Huang, X. X.; Shen, T.; Zhang, T.; Qiu, H. L.; Gu, X. X.; Ali, Z.; Hou, Y. L. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv. Energy Mater. 2020, 10, 1900375.

    CAS  Google Scholar 

  16. Yang, W. X.; Zhou, J. H.; Wang, S.; Wang, Z. C.; Lv, F.; Zhang, W. S.; Zhang, W. Y.; Sun, Q.; Guo, S. J. A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett. 2022, 5, 1653–1661.

    Google Scholar 

  17. Deng, Y. J.; Luo, J. M.; Chi, B.; Tang, H. B.; Li, J.; Qiao, X. C.; Shen, Y. J.; Yang, Y. J.; Jia, C. M.; Rao, P. et al. Advanced atomically dispersed metal-nitrogen-carbon catalysts toward cathodic oxygen reduction in PEM fuel cells. Adv. Energy Mater. 2021, 11, 2101222.

    CAS  Google Scholar 

  18. Luo, E. G.; Chu, Y. Y.; Liu, J.; Shi, Z. P.; Zhu, S. Y.; Gong, L. Y.; Ge, J. J.; Choi, C. H.; Liu, C. P.; Xing, W. Pyrolyzed M-Nx catalysts for oxygen reduction reaction: Progress and prospects. Energy Environ. Sci. 2021, 14, 2158–2185.

    CAS  Google Scholar 

  19. Yang, L.; Zeng, X. F.; Wang, W. C.; Cao, D. P. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 2018, 28, 1704537.

    Google Scholar 

  20. Qiang, F. Q.; Feng, J. G.; Wang, H. L.; Yu, J. H.; Shi, J.; Huang, M. H.; Shi, Z. C.; Liu, S.; Li, P.; Dong, L. F. Oxygen engineering enables N-doped porous carbon nanofibers as oxygen reduction/evolution reaction electrocatalysts for flexible zinc-air batteries. ACS Catal. 2022, 12, 4002–4015.

    CAS  Google Scholar 

  21. Zhang, Z. Y.; Zhao, X. X.; Xi, S. B.; Zhang, L. L.; Chen, Z. X.; Zeng, Z. P.; Huang, M.; Yang, H. B.; Liu, B.; Pennycook, S. J. et al. Atomically dispersed cobalt trifunctional electrocatalysts with tailored coordination environment for flexible rechargeable Zn-air battery and self-driven water splitting. Adv. Energy Mater. 2020, 10, 2002896.

    CAS  Google Scholar 

  22. Chen, R. Z.; Zhang, Z. Y.; Wang, Z. C.; Wu, W.; Du, S. W.; Zhu, W. B.; Lv, H. F.; Cheng, N. C. Constructing air-stable and reconstruction-inhibited transition metal sulfide catalysts via tailoring electron-deficient distribution for water oxidation. ACS Catal. 2022, 12, 13234–13246.

    CAS  Google Scholar 

  23. Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.

    Google Scholar 

  24. Zhang, Z. Y.; Tan, Y. Y.; Zeng, T.; Yu, L. Y.; Chen, R. Z.; Cheng, N. C.; Mu, S. C.; Sun, X. L. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res. 2020, 14, 2353–2362.

    Google Scholar 

  25. Zhou, T. P.; Xu, W. F.; Zhang, N.; Du, Z. Y.; Zhong, C. G.; Yan, W. S.; Ju, H. X.; Chu, W. S.; Jiang, H.; Wu, C. Z. et al. Ultrathin cobalt oxide layers as electrocatalysts for high-performance flexible Zn-air batteries. Adv. Mater. 2019, 31, 1807468.

    Google Scholar 

  26. Liu, T.; Mou, J. R.; Wu, Z. P.; Lv, C.; Huang, J. L.; Liu, M. L. A facile and scalable strategy for fabrication of superior bifunctional freestanding air electrodes for flexible zinc-air batteries. Adv. Funct. Mater. 2020, 30, 2003407.

    CAS  Google Scholar 

  27. Liu, P. T.; Gao, D. Q.; Xiao, W.; Ma, L.; Sun, K.; Xi, P. X.; Xue, D. S.; Wang, J. Self-powered water-splitting devices by core—shell NiFe@N-graphite-based Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1706928.

    Google Scholar 

  28. Liu, Y. S.; Chen, Z. C.; Li, Z. X.; Zhao, N.; Xie, Y. L.; Du, Y.; Xuan, J. N.; Xiong, D. B.; Zhou, J. Q.; Cai, L. et al. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy 2022, 99, 107325.

    CAS  Google Scholar 

  29. Wang, Z.; Ang, J.; Liu, J.; Ma, X. Y. D.; Kong, J. H.; Zhang, Y. F.; Yan, T.; Lu, X. H. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Appl. Catal. B: Environ. 2020, 263, 118344.

    CAS  Google Scholar 

  30. Li, S.; Cheng, C.; Zhao, X. J.; Schmidt, J.; Thomas, A. Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angew. Chem., Int. Ed. 2018, 57, 1856–1862.

    CAS  Google Scholar 

  31. Li, J. C.; Meng, Y.; Zhang, L. L.; Li, G. Z.; Shi, Z. C.; Hou, P. X.; Liu, C.; Cheng, H. M.; Shao, M. H. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2103360.

    CAS  Google Scholar 

  32. Sharma, P. P.; Wu, J. J.; Yadav, R. M.; Liu, M. J.; Wright, C. J.; Tiwary, C. S.; Yakobson, B. I.; Lou, J.; Ajayan, P. M.; Zhou, X. D. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: On the understanding of defects, defect density, and selectivity. Angew. Chem., Int. Ed. 2015, 54, 13701–13705.

    CAS  Google Scholar 

  33. Chen, Z. L.; Wu, R. B.; Liu, Y.; Ha, Y.; Guo, Y. H.; Sun, D. L.; Liu, M.; Fang, F. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 2018, 30, 1802011.

    Google Scholar 

  34. Gao, J.; Wang, Y.; Wu, H. H.; Liu, X.; Wang, L. L.; Yu, Q. L.; Li, A. W.; Wang, H.; Song, C. Q.; Gao, Z. R. et al. Construction of a sp3/sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 15089–15097.

    CAS  Google Scholar 

  35. Wu, C. H.; Chen, X. P.; Fu, J. W.; Zou, J. Z.; Liang, J. Z.; Wei, X. J.; Wang, L. L. ZIF-derived Co/NCNTs as a superior catalyst for aromatic hydrocarbon resin hydrogenation: Scalable green synthesis and insight into reaction mechanism. Chem. Eng. J. 2022, 443, 136193.

    CAS  Google Scholar 

  36. Zhang, S. L.; Lu, X. F.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. Engineering platinum-cobalt nano-alloys in porous nitrogen-doped carbon nanotubes for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19068–19073.

    CAS  Google Scholar 

  37. Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2019, 2, 688–695.

    CAS  Google Scholar 

  38. Jia, N.; Weng, Q.; Shi, Y. R.; Shi, X. Y.; Chen, X. B.; Chen, P.; An, Z. W.; Chen, Y. N-doped carbon nanocages: Bifunctional electrocatalysts for the oxygen reduction and evolution reactions. Nano Res. 2018, 11, 1905–1916.

    CAS  Google Scholar 

  39. Yokoyama, K.; Sato, Y.; Yamamoto, M.; Nishida, T.; Motomiya, K.; Tohji, K.; Sato, Y. Work function, carrier type, and conductivity of nitrogen-doped single-walled carbon nanotube catalysts prepared by annealing via defluorination and efficient oxygen reduction reaction. Carbon 2019, 142, 518–527.

    CAS  Google Scholar 

  40. Li, L. H.; Liu, X. J.; Wang, J. M.; Liu, R.; Liu, Y. R.; Wang, C. L.; Yang, W. X.; Feng, X.; Wang, B. Atomically dispersed Co in a cross-channel hierarchical carbon-based electrocatalyst for high-performance oxygen reduction in Zn-air batteries. J. Mater. Chem. A 2022, 10, 18723–18729.

    CAS  Google Scholar 

  41. Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.

    CAS  Google Scholar 

  42. Sharma, M.; Jang, J. H.; Shin, D. Y.; Kwon, J. A.; Lim, D. H.; Choi, D.; Sung, H.; Jang, J.; Lee, S. Y.; Lee, K. Y. et al. Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction. Energy Environ. Sci. 2019, 12, 2200–2211.

    CAS  Google Scholar 

  43. Wang, T. T.; Liu, M.; Chaemchuen, S.; Wang, J. C.; Yuan, Y.; Chen, C.; Qiao, A.; Verpoort, F.; Kou, Z. K. Constructing a stable cobalt-nitrogen-carbon air cathode from coordinatively unsaturated zeolitic-imidazole frameworks for rechargeable zinc-air batteries. Nano Res. 2022, 15, 5895–5901.

    CAS  Google Scholar 

  44. Wang, T. T.; Wang, P. Y.; Zang, W. J.; Li, X.; Chen, D.; Kou, Z. K.; Mu, S. C.; Wang, J. Nanoframes of Co3O4-Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER. Adv. Funct. Mater. 2021, 32, 2107382.

    Google Scholar 

  45. Tan, Y. Y.; Zhu, W. B.; Zhang, Z. Y.; Wu, W.; Chen, R. Z.; Mu, S. C.; Lv, H. F.; Cheng, N. C. Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Energy 2021, 83, 105813.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the National Key Research and Development Program of China (No. 2020YFB1506300), the National Natural Science Foundation of China (Nos. 21625102, 21971017, 21922502, 22075018, 51991344, 52025025, and 52072400), and Beijing Institute of Technology Research Fund Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxiu Yang or Bo Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, X., Li, L. et al. Heterogeneous assembling 3D free-standing Co@carbon membrane enabling efficient fluid and flexible zinc-air batteries. Nano Res. 16, 9327–9334 (2023). https://doi.org/10.1007/s12274-023-5553-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5553-x

Keywords

Navigation