Skip to main content
Log in

Metal-organic frameworks: Synthetic methods for industrial production

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs), which are constructed by metal ions or clusters with organic ligands, have shown great potential in gas storage and separation, luminescence, catalysis, drug delivery, sensing, and so on. More than 20,000 MOFs have been reported by adjusting the composition and reaction conditions, and most of them were synthesized by hydrothermal or solvothermal methods. The conventional solvothermal methods are favorable for the slow crystallization of MOFs to obtain single crystals or highly crystalline powders, which are suitable for the structure analysis. However, their harsh synthesis conditions, long reaction time, and difficulty in continuous synthesis limit their scale-up in industrial production and application. Meanwhile, shaping or processing is also required to bring MOF crystals and powders into the market. Therefore, this review demonstrates the crystallization mechanisms of MOFs to understand how the synthetic parameters affect the final products. Additionally, a variety of promising synthetic routes which can be used for large scale synthesis were reviewed in details. Lastly, the prospects of MOF shaping and processing are provided to promote their industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev. 2012, 112, 703–723.

    CAS  Google Scholar 

  2. Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.

    CAS  Google Scholar 

  3. Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.

    CAS  Google Scholar 

  4. Lin, R. B.; Xiang, S. C.; Xing, H. B.; Zhou, W.; Chen, B. L. Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 2019, 378, 87–103.

    CAS  Google Scholar 

  5. Cadiau, A.; Adil, K.; Bhatt, P. M.; Belmabkhout, Y.; Eddaoudi, M. A metal-organic framework-based splitter for separating propylene from propane. Science 2016, 353, 137–140.

    CAS  Google Scholar 

  6. Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352.

    CAS  Google Scholar 

  7. Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

    CAS  Google Scholar 

  8. Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

    CAS  Google Scholar 

  9. Sui, J.; Liu, H.; Hu, S. J.; Sun, K.; Wan, G.; Zhou, H.; Zheng, X.; Jiang, H. L. A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis. Adv. Mater. 2022, 34, 2109203.

    CAS  Google Scholar 

  10. Velásquez-Hernández, M. D. J.; Linares-Moreau, M.; Astria, E.; Carraro, F.; Alyami, M. Z.; Khashab, N. M.; Sumby, C. J.; Doonan, C. J.; Falcaro, P. Towards applications of bioentities@MOFs in biomedicine. Coord. Chem. Rev. 2021, 429, 213651.

    Google Scholar 

  11. Liang, W. B.; Wied, P.; Carraro, F.; Sumby, C. J.; Nidetzky, B.; Tsung, C. K.; Falcaro, P.; Doonan, C. J. Metal-organic framework-based enzyme biocomposites. Chem. Rev. 2021, 121, 1077–1129.

    CAS  Google Scholar 

  12. Peralta, R. A.; Huxley, M. T.; Evans, J. D.; Fallon, T.; Cao, H. J.; He, M. X.; Zhao, X. S.; Agnoli, S.; Sumby, C. J.; Doonan, C. J. Highly active gas phase organometallic catalysis supported within metal-organic framework pores. J. Am. Chem. Soc. 2020, 142, 13533–13543.

    CAS  Google Scholar 

  13. Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.

    CAS  Google Scholar 

  14. Lamer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

    CAS  Google Scholar 

  15. Feng, L.; Wang, K. Y.; Powell, J.; Zhou, H. C. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 2019, 1, 801–824.

    Google Scholar 

  16. Sosso, G. C.; Chen, J.; Cox, S. J.; Fitzner, M.; Pedevilla, P.; Zen, A.; Michaelides, A. Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations. Chem. Rev. 2016, 116, 7078–7116.

    CAS  Google Scholar 

  17. Mullin, J. W. Crystallization, 4th ed.; Butterworth-Heinemann: Oxford, 2001.

    Google Scholar 

  18. Van Vleet, M. J.; Weng, T. T.; Li, X. Y.; Schmidt, J. R. In situ, time-resolved, and mechanistic studies of metal-organic framework nucleation and growth. Chem. Rev. 2018, 118, 3681–3721.

    CAS  Google Scholar 

  19. Karthika, S.; Radhakrishnan, T. K.; Kalaichelvi, P. A review of classical and nonclassical nucleation theories. Cryst. Growth Des. 2016, 16, 6663–6681.

    CAS  Google Scholar 

  20. Xu, H. Q.; Wang, K. C.; Ding, M. L.; Feng, D. W.; Jiang, H. L.; Zhou, H. C. Seed-mediated synthesis of metal-organic frameworks. J. Am. Chem. Soc. 2016, 138, 5316–5320.

    CAS  Google Scholar 

  21. Liu, S. Y.; Zhang, Y.; Meng, Y.; Gao, F.; Jiao, S. J.; Ke, Y. C. Fast syntheses of MOFs using nanosized zeolite crystal seeds in situ generated from microsized zeolites. Cryst. Growth Des. 2013, 13, 2697–2702.

    CAS  Google Scholar 

  22. Mitsuka, Y.; Nagashima, K.; Kobayashi, H.; Kitagawa, H. A seed-mediated spray-drying method for fcile syntheses of Zr-MOF and a pillared-layer-type MOF. Chem. Lett. 2016, 45, 1313–1315.

    CAS  Google Scholar 

  23. Lim, I. H.; Schrader, W.; Schüth, F. Insights into the molecularassembly of zeolitic imidazolate frameworks by ESI-MS. Chem. Mater. 2015, 27, 3088–3095.

    CAS  Google Scholar 

  24. Patterson, J. P.; Abellan, P.; Denny, M. S. Jr.; Park, C.; Browning, N. D.; Cohen, S. M.; Evans, J. E.; Gianneschi, N. C. Observing the growth of metal-organic frameworks by in situ liquid cell transmission electron microscopy. J. Am. Chem. Soc. 2015, 137, 7322–7328.

    CAS  Google Scholar 

  25. Liu, X. W.; Chee, S. W.; Raj, S.; Sawczyk, M.; Král, P.; Mirsaidov, U. Three-step nucleation of metal-organic framework nanocrystals. Proc. Natl. Acad. Sci. USA 2021, 118, e2008880118.

    CAS  Google Scholar 

  26. Xing, J. F.; Schweighauser, L.; Okada, S.; Harano, K.; Nakamura, E. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses. Nat. Commun. 2019, 10, 3608.

    Google Scholar 

  27. Burton, W. K.; Cabrera, N.; Frank, F. C. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. Roy. Soc. Ser. A Mathemat. Phys. Sci. 1951, 243, 299–358.

    Google Scholar 

  28. Cubillas, P.; Anderson, M. W. Zeolites and Catalysis; Wiley-VCH Verlag GmbH & Co. KGaA, 2010; pp 1–55.

  29. Lovette, M. A.; Browning, A. R.; Griffin, D. W.; Sizemore, J. P.; Snyder, R. C.; Doherty, M. F. Crystal shape engineering. Ind. Eng. Chem. Res. 2008, 47, 9812–9833.

    CAS  Google Scholar 

  30. Van Santen, R. A. The ostwald step rule. J. Phys. Chem. 1984, 88, 5768–5769.

    CAS  Google Scholar 

  31. Voorhees, P. W. The theory of ostwald ripening. J. Stat. Phys. 1985, 38, 231–252.

    Google Scholar 

  32. Venna, S. R.; Jasnski, J. B.; Carreon M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132, 18030–18033.

    CAS  Google Scholar 

  33. De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H. Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760.

    Google Scholar 

  34. Han, J. L.; He, X. D.; Liu, J.; Ming, R. J.; Lin, M. H.; Li, H.; Zhou, X. C.; Deng, H. X. Determining factors in the growth of MOF single crystals unveiled by in situ interface imaging. Chem 2022, 8, 1637–1657.

    CAS  Google Scholar 

  35. Seoane, B.; Castellanos, S.; Dikhtiarenko, A.; Kapteijn, F.; Gascon, J. Multi-scale crystal engineering of metal organic frameworks. Coord. Chem. Rev. 2016, 307, 147–187.

    CAS  Google Scholar 

  36. Chin, J. M.; Chen, E. Y.; Menon, A. G.; Tan, H. Y.; Hor, A. T. S.; Schreyer, M. K.; Xu, J. W. Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorodsvia coordination modulation. CrystEngComm 2013, 15, 654–657.

    CAS  Google Scholar 

  37. Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130–2141.

    CAS  Google Scholar 

  38. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem. —Eur. J. 2011, 17, 6643–6651.

    CAS  Google Scholar 

  39. Bentz, K. C.; Ayala, S.; Kalaj, M.; Cohen, S. M.; Bentz, K. C.; Ayala, S.; Kalaj, M.; Cohen, S. M. Polyacids as modulators for the synthesis of UiO-66. Aust. J. Chem. 2019, 72, 848–851.

    CAS  Google Scholar 

  40. Gong, X.; Shu, Y. F.; Jiang, Z.; Lu, L. X.; Xu, X. H.; Wang, C.; Deng, H. X. Metal-organic frameworks for the exploitation of distance between active sites in efficient photocatalysis. Angew. Chem., Int. Ed. 2020, 59, 5326–5331.

    CAS  Google Scholar 

  41. Liu, X. Y.; Liu, B.; Li, G. H.; Liu, Y. L. Two anthracene-based metal-organic frameworks for highly effective photodegradation and luminescent detection in water. J. Mater. Chem. A 2018, 6, 17177–17185.

    CAS  Google Scholar 

  42. Henkelis, S. E.; Vornholt, S. M.; Cordes, D. B.; Slawin, A. M. Z.; Wheatley, P. S.; Morris, R. E. A single crystal study of CPO-27 and UTSA-74 for nitric oxide storage and release. CrystEngComm 2019, 21, 1857–1861.

    CAS  Google Scholar 

  43. Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S. Morphology design of porous coordination polymer crystals by coordination modulation. J. Am. Chem. Soc. 2011, 133, 15506–15513.

    CAS  Google Scholar 

  44. Chen, Y. F.; Zhang, S. H.; Chen, F.; Cao, S. J.; Cai, Y.; Li, S. Q.; Ma, H. W.; Ma, X. J.; Li, P. F.; Huang, X. Q. et al. Defect engineering of highly stable lanthanide metal-organic frameworks by particle modulation for coating catalysis. J. Mater. Chem. A 2018, 6, 342–348.

    CAS  Google Scholar 

  45. Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 2013, 135, 10525–10532.

    CAS  Google Scholar 

  46. Cai, G. R.; Jiang, H. L. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew. Chem., Int. Ed. 2017, 56, 563–567.

    CAS  Google Scholar 

  47. Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.

    CAS  Google Scholar 

  48. Feng, X.; Hajek, J.; Jena, H. S.; Wang, G. B.; Veerapandian, S. K. P.; Morent, R.; De Geyter, N.; Leyssens, K.; Hoffman, A. E. J.; Meynen, V. et al. Engineering a highly defective stable UiO-66 with tunable Lewis-Bronsted acidity: The role of the hemilabile linker. J. Am. Chem. Soc. 2020, 142, 3174–3183.

    CAS  Google Scholar 

  49. Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

    CAS  Google Scholar 

  50. Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Best practices for the synthesis, activation, and characterization of metal-organic frameworks. Chem. Mater. 2017, 29, 26–39.

    CAS  Google Scholar 

  51. Cohen, S. M. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev. 2012, 112, 970–1000.

    CAS  Google Scholar 

  52. Rabenau, A. The role of hydrothermal synthesis in preparative chemistry. Angew. Chem., Int. Ed. 1985, 24, 1026–1040.

    Google Scholar 

  53. Burrows, A. D.; Cassar, K.; Düren, T.; Friend, R. M.; Mahon, M. F.; Rigby, S. P.; Savarese, T. L. Syntheses, structures and properties of cadmium benzenedicarboxylate metal-organic frameworks. Dalton Trans. 2008, 2465–2474.

  54. Rowsell, J. L. C.; Yaghi, O. M. Metal-organic frameworks: A new class of porous materials. Microporous Mesoporous Mater. 2004, 73, 3–14.

    CAS  Google Scholar 

  55. Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S. et al. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018–1023.

    CAS  Google Scholar 

  56. Ojha, R. P.; Lemieux, P. A.; Dixon, P. K.; Liu, A. J.; Durian, D. J. Statistical mechanics of a gas-fluidized particle. Nature 2004, 427, 521–523.

    CAS  Google Scholar 

  57. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

    Google Scholar 

  58. Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640.

    CAS  Google Scholar 

  59. Zou, L. F.; Feng, D. W.; Liu, T. F.; Chen, Y. P.; Yuan, S.; Wang, K. C.; Wang, X.; Fordham, S.; Zhou, H. C. A versatile synthetic route for the preparation of titanium metal-organic frameworks. Chem. Sci. 2016, 7, 1063–1069.

    CAS  Google Scholar 

  60. Andreo, J.; Priola, E.; Alberto, G.; Benzi, P.; Marabello, D.; Proserpio, D. M.; Lamberti, C.; Diana, E. Autoluminescent metal-organic frameworks (MOFs): Self-photoemission of a highly stable thorium MOF. J. Am. Chem. Soc. 2018, 140, 14144–14149.

    CAS  Google Scholar 

  61. Sanii, R.; Hua, C.; Patyk-Kaźmierczak, E.; Zaworotko, M. J. Solvent-directed control over the topology of entanglement in square lattice (sql) coordination networks. Chem. Commun. 2019, 55, 1454–1457.

    CAS  Google Scholar 

  62. Xie, L. S.; Alexandrov, E. V.; Skorupskii, G.; Proserpio, D. M.; Dincă, M. Diverse π-π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal-organic frameworks. Chem. Sci. 2019, 10, 8558–8565.

    CAS  Google Scholar 

  63. Muldoon, P. F.; Liu, C.; Miller, C. C.; Koby, S. B.; Jarvi, A. G.; Luo, T. Y.; Saxena, S.; O’Keeffe, M.; Rosi, N. L. Programmable topology in new families of heterobimetallic metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 6194–6198.

    CAS  Google Scholar 

  64. Fischer, S.; Roeser, J.; Lin, T. C.; DeBlock, R. H.; Lau, J.; Dunn, B. S.; Hoffmann, F.; Frçba, M.; Thomas, A.; Tolbert, S. H. A metal-organic framework with tetrahedral aluminate sites as a single-ion Li+ solid electrolyte. Angew. Chem., Int. Ed. 2018, 57, 16683–16687.

    CAS  Google Scholar 

  65. Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480.

    CAS  Google Scholar 

  66. Lidström, P.; Tierney, J.; Wathey, B.; Westman J. Microwave assisted organic synthesis: A review. Tetrahedron 2001, 57, 9225–9283.

    Google Scholar 

  67. Jhung, S. H.; Lee, J. H.; Chang, J. S. Microwave synthesis of a nanoporius hybrid material, chromium trimesate. Bull. Korean Chem. Soc. 2005, 26, 880–881.

    CAS  Google Scholar 

  68. Choi, J. S.; Son, W. J.; Kim, J.; Ahn, W. S. Metal-organic framework MOF-5 prepared by microwave heating: Factors to be considered. Microporous Mesoporous Mater. 2008, 116, 727–731.

    CAS  Google Scholar 

  69. Son, W. J.; Kim, J.; Kim, J.; Ahn, W. S. Sonochemical synthesis of MOF-5. Chem. Commun. 2008, 6336–6338.

  70. Li, M. Y.; Dincă, M. Reductive electrosynthesis of crystalline metal-organic frameworks. J. Am. Chem. Soc. 2011, 133, 12926–12929.

    CAS  Google Scholar 

  71. Chen, Y. F.; Li, S. Q.; Pei, X. K.; Zhou, J. W.; Feng, X.; Zhang, S. H.; Cheng, Y. Y.; Li, H. W.; Han, R. D.; Wang, B. A solvent-free hot-pressing method for preparing metal-organic-framework coatings. Angew. Chem., Int. Ed. 2016, 55, 3419–3423.

    CAS  Google Scholar 

  72. McKinstry, C.; Cathcart, R. J.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chem. Eng. J. 2016, 285, 718–725.

    CAS  Google Scholar 

  73. Seo, Y. K.; Hundal, G.; Jang, I. T.; Hwang, Y. K.; Jun, C. H.; Chang, J. S. Microwave synthesis of hybrid inorganic-organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Microporous Mesoporous Mater. 2009, 119, 331–337.

    CAS  Google Scholar 

  74. Li, Z. Q.; Qiu, L. G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z. Y.; Jiang, X. Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 2009, 63, 78–80.

    CAS  Google Scholar 

  75. Nawrocki, J.; Prochowicz, D.; Wiśniewski, A.; Justyniak, I.; Goś, P.; Lewiński, J. Development of an SBU-based mechanochemical approach for drug-loaded MOFs. Eur. J. Inorg. Chem. 2020, 2020, 796–800.

    CAS  Google Scholar 

  76. Crawford, D.; Casaban, J.; Haydon, R.; Giri, N.; McNally, T.; James, S. L. Synthesis by extrusion: Continuous, large-scale preparation of MOFs using little or no solvent. Chem. Sci. 2015, 6, 1645–1649.

    CAS  Google Scholar 

  77. Carné-Sánchez, A.; Imaz, I.; Cano-Sarabia, M.; Maspoch, D. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nat. Chem. 2013, 5, 203–211.

    Google Scholar 

  78. Ameloot, R.; Vermoortele, F.; Vanhove, W.; Roeffaers, M. B. J.; Sels, B. F.; De Vos, D. E. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat. Chem. 2011, 3, 382–387.

    CAS  Google Scholar 

  79. Yang, D. A.; Cho, H. Y.; Kim, J.; Yang, S. T.; Ahn, W. S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 2012, 5, 6465–6473.

    CAS  Google Scholar 

  80. Wu, X. F.; Bao, Z. B.; Yuan, B.; Wang, J.; Sun, Y. Q.; Luo, H. M.; Deng, S. G. Microwave synthesis and characterization of MOF-74 (M = Ni, Mg) for gas separation. Microporous Mesoporous Mater. 2013, 180, 114–122.

    CAS  Google Scholar 

  81. Ayoub, G.; Karadeniz, B.; Howarth, A. J.; Farha, O. K.; Ðilović, I.; Germann, L. S.; Dinnebier, R. E.; Užarević, K.; Friščić, T. Rational synthesis of mixed-metal microporous metal-organic frameworks with controlled composition using mechanochemistry. Chem. Mater. 2019, 31, 5494–5501.

    CAS  Google Scholar 

  82. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am. Chem. Soc. 2008, 130, 13850–13851.

    Google Scholar 

  83. Karadeniz, B.; Howarth, A. J.; Stolar, T.; Islamoglu, T.; Dejanović, I.; Tireli, M.; Wasson, M. C.; Moon, S. Y.; Farha, O. K.; Friščić, T. et al. Benign by design: Green and scalable synthesis of zirconium UiO-metal-organic frameworks by water-assisted mechanochemistry. ACS Sustainable Chem. Eng. 2018, 6, 15841–15849.

    CAS  Google Scholar 

  84. Avci-Camur, C.; Troyano, J.; Pérez-Carvajal, J.; Legrand, A.; Farrusseng, D.; Imaz, I.; Maspoch, D. Aqueous production of spherical Zr-MOF beads via continuous-flow spray-drying. Green Chem. 2018, 20, 873–878.

    CAS  Google Scholar 

  85. Taddei, M.; Steitz, D. A.; Van Bokhoven, J. A.; Ranocchiari, M. Continuous-flow microwave synthesis of metal-organic frameworks: A highly efficient method for large-scale production. Chem. —Eur. J. 2016, 22, 3245–3249.

    CAS  Google Scholar 

  86. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    CAS  Google Scholar 

  87. Chaemchuen, S.; Zhou, K.; Mousavi, B.; Ghadamyari, M.; Heynderickx, P. M.; Zhuiykov, S.; Yusubov, M. S.; Verpoort, F. Spray drying of zeolitic imidazolate frameworks: Investigation of crystal formation and properties. CrystEngComm 2018, 20, 3601–3608.

    CAS  Google Scholar 

  88. Polyzoidis, A.; Altenburg, T.; Schwarzer, M.; Loebbecke, S.; Kaskel, S. Continuous microreactor synthesis of ZIF-8 with high space-time-yield and tunable particle size. Chem. Eng. J. 2016, 283, 971–977.

    CAS  Google Scholar 

  89. Laybourn, A.; Katrib, J.; Ferrari-John, R. S.; Morris, C. G.; Yang, S. H.; Udoudo, O.; Easun, T. L.; Dodds, C.; Champness, N. R.; Kingman, S. W. et al. Metal-organic frameworks in seconds via selective microwave heating. J. Mater. Chem A 2017, 5, 7333–7338.

    CAS  Google Scholar 

  90. Ni, Z.; Masel, R. I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395.

    CAS  Google Scholar 

  91. Liu, B. T.; He, Y. P.; Han, L. P.; Singh, V.; Xu, X. N.; Guo, T.; Meng, F. Y.; Xu, X.; York, P.; Liu, Z. X. et al. Microwave-assisted rapid synthesis of γ-cyclodextrin metal-organic frameworks for size control and efficient drug loading. Cryst. Growth Des. 2017, 17, 1654–1660.

    CAS  Google Scholar 

  92. Jiang, Z. W.; Zou, Y. C.; Zhao, T. T.; Zhen, S. J.; Li, Y. F.; Huang, C. Z. Controllable synthesis of porphyrin-based 2D lanthanide metal-organic frameworks with thickness- and metal-node-dependent photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 3300–3306.

    CAS  Google Scholar 

  93. Haque, E.; Khan, N. A.; Park, J. H.; Jhung, S. H. Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: A kinetic study. Chem. —Eur. J. 2010, 16, 1046–1052.

    CAS  Google Scholar 

  94. Dreischarf, A. C.; Lammert, M.; Stock, N.; Reinsch, H. Green synthesis of Zr-CAU-28: Structure and properties of the first Zr-MOF based on 2, 5-furandicarboxylic acid. Inorg. Chem. 2017, 56, 2270–2277.

    CAS  Google Scholar 

  95. Jacobsen, J.; Achenbach, B.; Reinsch, H.; Smolders, S.; Lange, F. D.; Friedrichs, G.; De Vos, D.; Stock, N. The first water-based synthesis of Ce(IV)-MOFs with saturated chiral and achiral C4-dicarboxylate linkers. Dalton Trans. 2019, 48, 8433–8441.

    CAS  Google Scholar 

  96. Lee, Y. R.; Kim, J.; Ahn, W. S. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 2013, 30, 1667–1680.

    CAS  Google Scholar 

  97. Suslick, K. S.; Hammerton, D. A.; Cline, R. E. Jr. Sonochemical hot spot. J. Am. Chem. Soc. 1986, 108, 5641–5642.

    CAS  Google Scholar 

  98. Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. 2008, 3642–3644.

  99. Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal organic frameworks (MOFs) and ultrasound: A review. Ultrason. Sonochem. 2019, 52, 106–119.

    CAS  Google Scholar 

  100. Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

    CAS  Google Scholar 

  101. Li, C.; Hu, X. S.; Tong, W.; Yan, W. S.; Lou, X. B.; Shen, M.; Hu, B. W. Ultrathin manganese-based metal-organic framework nanosheets: Low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities. ACS Appl. Mater. Interfaces 2017, 9, 29829–29838.

    CAS  Google Scholar 

  102. Ning, Y. Q.; Lou, X. B.; Li, C.; Hu, X. S.; Hu, B. W. Ultrathin cobalt-based metal-organic framework nanosheets with both metal and ligand redox activities for superior lithium storage. Chem. —Eur. J. 2017, 23, 15984–15990.

    CAS  Google Scholar 

  103. Yuan, M. W.; Wang, R.; Fu, W. B.; Lin, L.; Sun, Z. M.; Long, X. G.; Zhang, S. T.; Nan, C. Y.; Sun, G. B.; Li, H. F. et al. Ultrathin two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 batteries. ACS Appl. Mater. Interfaces 2019, 11, 11403–11413.

    CAS  Google Scholar 

  104. Kim, J.; Yang, S. T.; Choi, S. B.; Sim, J.; Kim, J.; Ahn, W. S. Control of catenation in CuTATB-n metal-organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J. Mater. Chem. 2011, 21, 3070–3076.

    CAS  Google Scholar 

  105. Li, J. X.; Li, Y. H.; Qin, Z. B.; Dong, G. Y. Ultrasound assisted synthesis of a zinc(II) coordination polymer with nano-flower morphology and the use as precursor for zinc(II) oxide nanoparticles. Polyhedron 2018, 155, 94–101.

    CAS  Google Scholar 

  106. Mueller, U.; Puetter, H.; Hesse, M.; Wessel, H.W. Method for electrochemical production of a crystalline porous metal organic skeleton material. WO 2005/049892, February 6, 2005.

  107. Wei, J. Z.; Wang, X. L.; Sun, X. J.; Hou, Y.; Zhang, X.; Yang, D. D.; Dong, H.; Zhang, F. M. Rapid and large-scale synthesis of IRMOF-3 by electrochemistry method with enhanced fluorescence detection performance for TNP. Inorg. Chem. 2018, 57, 3818–3824.

    CAS  Google Scholar 

  108. Wei, J. Z.; Gong, F. X.; Sun, X. J.; Li, Y.; Zhang, T.; Zhao, X. J.; Zhang, F. M. Rapid and low-cost electrochemical synthesis of UiO-66-NH2 with enhanced fluorescence detection performance. Inorg. Chem. 2019, 58, 6742–6747.

    CAS  Google Scholar 

  109. Kang, X. C.; Lyu, K.; Li, L. L.; Li, J. N.; Kimberley, L.; Wang, B.; Liu, L. F.; Cheng, Y. Q.; Frogley, M. D.; Rudić, S. et al. Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis. Nat. Commun. 2019, 10, 4466.

    Google Scholar 

  110. Li, W. J.; Tu, M.; Cao, R.; Fischer, R. A. Metal-organic framework thin films: Electrochemical fabrication techniques and corresponding applications & perspectives. J. Mater. Chem. A 2016, 4, 12356–12369.

    CAS  Google Scholar 

  111. Li, W. J.; Lü, J.; Gao, S. Y.; Li, Q. H.; Cao, R. Electrochemical preparation of metal-organic framework films for fast detection of nitro explosives. J. Mater. Chem. A 2014, 2, 19473–19478.

    CAS  Google Scholar 

  112. Li, M. Y.; Dincă, M. Selective formation of biphasic thin films of metal-organic frameworks by potential-controlled cathodic electrodeposition. Chem. Sci. 2014, 5, 107–111.

    Google Scholar 

  113. Liu, Y. X.; Wei, Y. N.; Liu, M. H.; Bai, Y. C.; Wang, X. Y.; Shang, S. C.; Chen, J. Y.; Liu, Y. Q. Electrochemical synthesis of large area two-dimensional metal-organic framework films on copper anodes. Angew. Chem., Int. Ed. 2021, 60, 2887–2891.

    CAS  Google Scholar 

  114. Zhou, S.; Shekhah, O.; Jia, J. T.; Czaban-Jóźwiak, J.; Bhatt, P. M.; Ramírez, A.; Gascon, J.; Eddaoudi, M. Electrochemical synthesis of continuous metal-organic framework membranes for separation of hydrocarbons. Nat. Energy 2021, 6, 882–891.

    CAS  Google Scholar 

  115. Pichon, A.; Lazuen-Garay, A.; James, S. L. Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006, 8, 211–214.

    CAS  Google Scholar 

  116. Li, R.; Ren, X. Q.; Zhao, J. S.; Feng, X.; Jiang, X.; Fan, X. X.; Lin, Z. G.; Li, X. G.; Hu, C. W.; Wang, B. Polyoxometallates trapped in a zeolitic imidazolate framework leading to high uptake and selectivity of bioactive molecules. J. Mater. Chem. A 2014, 2, 2168–2173.

    CAS  Google Scholar 

  117. Fidelli, A. M.; Karadeniz, B.; Howarth, A. J.; Huskić, I.; Germann, L. S.; Halasz, I.; Etter, M.; Moon, S. Y.; Dinnebier, R. E.; Stilinović, V. et al. Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal-organic frameworks. Chem. Commun. 2018, 54, 6999–7002.

    CAS  Google Scholar 

  118. Karadeniz, B.; Žilić, D.; Huskić, I.; Germann, L. S.; Fidelli, A. M.; Muratović, S.; Lončarić, I.; Etter, M.; Dinnebier, R. E.; Barišić, D. et al. Controlling the polymorphism and topology transformation in porphyrinic zirconium metal-organic frameworks via mechanochemistry. J. Am. Chem. Soc. 2019, 141, 19214–19220.

    CAS  Google Scholar 

  119. Lee, H. K.; Lee, J. H.; Moon, H. R. Mechanochemistry as a reconstruction tool of decomposed metal-organic frameworks. Inorg. Chem. 2021, 60, 11825–11829.

    CAS  Google Scholar 

  120. Crawford, D. E.; Casaban, J. Recent developments in mechanochemical materials synthesis by extrusion. Adv. Mater. 2016, 28, 5747–5754.

    CAS  Google Scholar 

  121. Darwish, S.; Wang, S. Q.; Croker, D. M.; Walker, G. M.; Zaworotko, M. J. Comparison of mechanochemistry vs solution methods for synthesis of 4,4’-bipyridine-based coordination polymers. ACS Sustainable Chem. Eng. 2019, 7, 19505–19512.

    CAS  Google Scholar 

  122. Abramova, A.; Couzon, N.; Leloire, M.; Nerisson, P.; Cantrel, L.; Royer, S.; Loiseau, T.; Volkringer, C.; Dhainaut, J. Extrusion-spheronization of UiO-66 and UiO-66_NH2 into robust-shaped solids and their use for gaseous molecular iodine, xenon, and krypton adsorption. ACS Appl. Mater. Interfaces 2022, 14, 10669–10680.

    CAS  Google Scholar 

  123. Quan, Y. F.; Shen, R. Q.; Ma, R.; Zhang, Z. R.; Wang, Q. S. Sustainable and efficient manufacturing of metal-organic framework-based polymer nanocomposites by reactive extrusion. ACS Sustainable Chem. Eng. 2022, 10, 7216–7222.

    CAS  Google Scholar 

  124. Ma, X. J.; Chai, Y. T.; Li, P.; Wang, B. Metal-organic framework films and their potential applications in environmental pollution control. Acc. Chem. Res. 2019, 1461–1470.

  125. Chen, Y. F.; Zhang, S. H.; Cao, S. J.; Li, S. Q.; Chen, F.; Yuan, S.; Xu, C.; Zhou, J. W.; Feng, X.; Ma, X. J. et al. Roll-to-roll production of metal-organic framework coatings for particulate matter removal. Adv. Mater. 2017, 29, 1606221.

    Google Scholar 

  126. Tang, Y. J.; Chen, Y. F.; Zhu, H. J.; Zhang, A. M.; Wang, X. L.; Dong, L. Z.; Li, S. L.; Xu, Q.; Lan, Y. Q. Solid-phase hot-pressing synthesis of POMOFs on carbon cloth and derived phosphides for all pH value hydrogen evolution. J. Mater. Chem. A 2018, 6, 21969–21977.

    CAS  Google Scholar 

  127. Li, G. P.; Cao, F.; Zhang, K.; Hou, L.; Gao, R. C.; Zhang, W. Y.; Wang, Y. Y. Design of anti-UV radiation textiles with self-assembled metal-organic framework coating. Adv. Mater. Interfaces 2020, 7, 1901525.

    CAS  Google Scholar 

  128. Li, P.; Li, J. Z.; Feng, X.; Li, J.; Hao, Y. C.; Zhang, J. W.; Wang, H.; Yin, A. X.; Zhou, J. W.; Ma, X. J. et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 2019, 10, 2177.

    CAS  Google Scholar 

  129. Wang, H.; Zhao, S.; Liu, Y.; Yao, R. X.; Wang, X. Q.; Cao, Y. H.; Ma, D.; Zou, M. C.; Cao, A. Y.; Feng, X. et al. Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nat. Commun. 2019, 10, 4204.

    Google Scholar 

  130. Gauvin, W. H.; Katta, S. Basic concepts of spray dryer design. AIChE J. 1976, 22, 713–724.

    CAS  Google Scholar 

  131. Garzón-Tovar, L.; Cano-Sarabia, M.; Carné-Sánchez, A.; Carbonell, C.; Imaz, I.; Maspoch, D. A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads. React. Chem. Eng. 2016, 1, 533–539.

    Google Scholar 

  132. Avci, C.; De Marco, M. L.; Byun, C.; Perrin, J.; Scheel, M.; Boissière, C.; Faustini, M. Metal-organic framework photonic balls: Single object analysis for local thermal probing. Adv. Mater. 2021, 33, 2104450.

    CAS  Google Scholar 

  133. Sun, J. Z.; Kwon, H. T.; Jeong, H. K. Continuous synthesis of high quality metal-organic framework HKUST-1 crystals and composites via aerosol-assisted synthesis. Polyhedron 2018, 153, 226–233.

    CAS  Google Scholar 

  134. Stassen, I.; Styles, M.; Grenci, G.; Van Gorp, H.; Vanderlinden, W.; De Feyter, S.; Falcaro, P.; De Vos, D.; Vereecken, P.; Ameloot, R. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat. Mater. 2016, 15, 304–310.

    CAS  Google Scholar 

  135. Britton, J.; Jamison, T. F. The assembly and use of continuous flow systems for chemical synthesis. Nat. Protoc. 2017, 12, 2423–2446.

    CAS  Google Scholar 

  136. Albuquerque, G. H.; Fitzmorris, R. C.; Ahmadi, M.; Wannenmacher, N.; Thallapally, P. K.; McGrail, B. P.; Herman, G. S. Gas-liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures. CrystEngComm 2015, 17, 5502–5510.

    CAS  Google Scholar 

  137. Liu, X. M.; Xie, L. H.; Wu, Y. F. Recent advances in the shaping of metal-organic frameworks. Inorg. Chem. Front. 2020, 7, 2840–2866.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21971017, 21901019, and 22205018), the National Key Research and Development Program of China (No. 2020YFB1506300), and Beijing Institute of Technology Research Fund Program. The authors acknowledge the Analysis and Testing Center of BIT for technical supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Wang or Bo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Huang, X., Zhang, Y. et al. Metal-organic frameworks: Synthetic methods for industrial production. Nano Res. 16, 7906–7925 (2023). https://doi.org/10.1007/s12274-023-5441-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5441-4

Keywords

Navigation