Skip to main content
Log in

Solid-state corrosion of lithium for prelithiation of SiOx-C composite anode with carbon-incorporated lithium phosphorus oxynitride

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In order to address the issues of low initial Coulombic efficiency of SiOx-C composite anode due to the formation of solid electrolyte interphase, irreversible conversion reaction, and large volume change, the prelithiation method using metal lithium has been employed as one of effective solutions. However, violent side reactions with liquid electrolyte for prelithiation lead to low prelithiation efficiency and induce poor interface between the SiOx-C electrode and liquid electrolyte. Here, a new prelithiation method with so called solid-state corrosion of lithium is developed. By replacing liquid electrolyte with solid-state electrolyte of carbon-incorporated lithium phosphorus oxynitride (LiCPON), not only various side reactions associated with metal lithium are avoided, but also the perfect interface is achieved from the decomposition products of LiCPON. The successful implementation of solid-state corrosion prelithiation can be confirmed by changes in optical image, scanning electron microscopy, and X-ray diffraction. Compared with pristine electrode, the initial Coulombic efficiency of the prelithiated electrode using solid electrolyte can be increased by about 10%, reaching 98.6% in half cell and 88.9% in full cell. Compared with prelithiated electrode using liquid electrolyte, the prelithiation efficiency of the prelithiated anode with solid-state corrosion can be increased from 25.7% to 82.8%. Solid-state corrosion of lithium is expected to become a useful method for prelithiation of SiOx-C composite electrode with high initial Coulombic efficiency and large prelithiation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui, Y. Silicon anodes. Nat. Energy 2021, 6, 995–996.

    Article  CAS  Google Scholar 

  2. Pan, Q. R.; Zuo, P. J.; Mu, T. S.; Du, C. Y.; Cheng, X. Q.; Ma, Y. L.; Gao, Y. Z.; Yin, G. P. Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. J. Power Sources 2017, 347, 170–177.

    Article  CAS  Google Scholar 

  3. Yao, Y.; Zhang, J. J.; Xue, L. G.; Huang, T.; Yu, A. S. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries. J. Power Sources 2011, 196, 10240–10243.

    Article  CAS  Google Scholar 

  4. Choi, G.; Kim, J.; Kang, B. Understanding limited reversible capacity of a SiO electrode during the first cycle and its effect on initial Coulombic efficiency. Chem. Mater. 2019, 31, 6097–6104.

    Article  CAS  Google Scholar 

  5. Meng, Q. H.; Li, G.; Yue, J. P.; Xu, Q.; Yin, Y. X.; Guo, Y. G. High-performance lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy. ACS Appl. Mater. Interfaces 2019, 11, 32062–32068.

    Article  CAS  Google Scholar 

  6. Zhang, Y. X.; Wu, B. R.; Mu, G.; Ma, C. W.; Mu, D. B.; Wu, F. Recent progress and perspectives on silicon anode: Synthesis and prelithiation for LIBs energy storage. J. Energy Chem. 2022, 64, 615–650.

    Article  CAS  Google Scholar 

  7. Tang, F. Q.; Jiang, T. T.; Tan, Y.; Xu, X. Y.; Zhou, Y. K. Preparation and electrochemical performance of silicon@graphene aerogel composites for lithium-ion batteries. J. Alloys Compd. 2021, 854, 157135.

    Article  CAS  Google Scholar 

  8. Ouyang, P. H.; Jin, C. X.; Xu, G. J.; Yang, X. X.; Kong, K. J.; Liu, B. B.; Dan, J. L.; Chen, J.; Yue, Z. H.; Li, X. M. et al. Lithium ion batteries with enhanced electrochemical performance by using carbon-coated SiOx/Ag composites as anode material. Ceram. Int. 2021, 47, 1086–1094.

    Article  CAS  Google Scholar 

  9. Li, H. Y.; Li, H. D.; Yang, Z. W.; Yang, L. W.; Gong, J. Y.; Liu, Y. X.; Wang, G. K.; Zheng, Z.; Zhong, B. H.; Song, Y. et al. SiOx anode: From fundamental mechanism toward industrial application. Small 2021, 17, 2102641.

    Article  CAS  Google Scholar 

  10. Forney, M. W.; Ganter, M. J.; Staub, J. W.; Ridgley, R. D.; Landi, B. J. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett. 2013, 13, 4158–4163.

    Article  CAS  Google Scholar 

  11. Kim, M. G.; Cho, J. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell. J. Mater. Chem. 2008, 18, 5880–5887.

    Article  CAS  Google Scholar 

  12. Noh, M.; Cho, J. Role of Li6CoO4 cathode additive in Li-ion cells containing low Coulombic efficiency anode material. J. Electrochem. Soc. 2012, 159, A1329–A1334.

    Article  CAS  Google Scholar 

  13. Shanmukaraj, D.; Grugeon, S.; Laruelle, S.; Douglade, G.; Tarascon, J. M.; Armand, M. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries. Electrochem. Commun. 2010, 12, 1344–1347.

    Article  CAS  Google Scholar 

  14. Yang, S. Y.; Yue, X. Y.; Xia, H. Y.; Li, X. L.; Wang, T.; Li, H.; Fu, Z. W. Battery prelithiation enabled by lithium fixation on cathode. J. Power Sources 2020, 480, 229109.

    Article  CAS  Google Scholar 

  15. Jang, J.; Kang, I.; Choi, J.; Jeong, H.; Yi, K. W.; Hong, J.; Lee, M. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes. Angew. Chem., Int. Ed. 2020, 59, 14473–14480.

    Article  CAS  Google Scholar 

  16. Shen, Y. F.; Shen, X. H.; Yang, M.; Qian, J. F.; Cao, Y. L.; Yang, H. X.; Luo, Y.; Ai, X. P. Achieving desirable initial Coulombic efficiencies and full capacity utilization of Li-ion batteries by chemical prelithiation of graphite anode. Adv. Funct. Mater. 2021, 31, 2101181.

    Article  CAS  Google Scholar 

  17. Zhao, J.; Lu, Z. D.; Liu, N.; Lee, H. W.; McDowell, M. T.; Cui, Y. Dry-air-stable lithium silicide-lithium oxide core—shell nanoparticles as high-capacity prelithiation reagents. Nat. Commun. 2014, 5, 5088.

    Article  CAS  Google Scholar 

  18. Duan, J.; Zheng, Y. H.; Luo, W.; Wu, W. Y.; Wang, T. R.; Xie, Y.; Li, S.; Li, J.; Huang, Y. H. Is graphite lithiophobic or lithiophilic? Natl. Sci. Rev. 2020, 7, 1208–1217.

    Article  CAS  Google Scholar 

  19. Peled, E.; Menkin, S. Review—SEI: Past, present and future. J. Electrochem. Soc. 2017, 164, A1703–A1719.

    Article  CAS  Google Scholar 

  20. Liu, N.; Hu, L. B.; McDowell, M. T.; Jackson, A.; Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 2011, 5, 6487–6493.

    Article  CAS  Google Scholar 

  21. Shellikeri, A.; Watson, V.; Adams, D.; Kalu, E. E.; Read, J. A.; Jow, T. R.; Zheng, J. S.; Zheng, J. P. Investigation of pre-lithiation in graphite and hard-carbon anodes using different lithium source structures. J. Electrochem. Soc. 2017, 164, A3914–A3924.

    Article  CAS  Google Scholar 

  22. Cao, Z. Y.; Xu, P. Y.; Zhai, H. W.; Du, S. C.; Mandal, J.; Dontigny, M.; Zaghib, K.; Yang, Y. Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density. Nano Lett. 2016, 16, 7235–7240.

    Article  CAS  Google Scholar 

  23. Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Lee, Y. J.; Kim, E. K.; Choi, J. W. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 2016, 16, 282–288.

    Article  CAS  Google Scholar 

  24. Yang, S. Y.; Yue, X. Y.; Dai, W. Q.; Wang, D. L.; Xia, H. Y.; Qiao, Y.; Fu, Z. W. Graphite prelithiation by solid electrochemical corrosion of lithium metal with a superficial mosaic structure. Chem. Commun. 2021, 57, 10371–10374.

    Article  CAS  Google Scholar 

  25. Xia, H. Y.; Wang, X. X.; Ren, G. X.; Wang, W. W.; Zhou, Y. N.; Shadike, Z.; Hu, E. Y.; Yang, X. Q.; Zheng, J. Y.; Liu, X. S. et al. A new carbon-incorporated lithium phosphate solid electrolyte. J. Power Sources 2021, 514, 230603.

    Article  CAS  Google Scholar 

  26. Kim, K. H.; Shon, J.; Jeong, H.; Park, H.; Lim, S. J.; Heo, J. S. Improving the cyclability of silicon anodes for lithium-ion batteries using a simple pre-lithiation method. J. Power Sources 2020, 459, 228066.

    Article  CAS  Google Scholar 

  27. Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material—Fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy Fuels 2020, 4, 5387–5416.

    Article  CAS  Google Scholar 

  28. Yao, K. P. C.; Okasinski, J. S.; Kalaga, K.; Almer, J. D.; Abraham, D. P. Operando quantification of (de) lithiation behavior of silicon-graphite blended electrodes for lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1803380.

    Article  Google Scholar 

  29. Shi, P.; Hou, L. P.; Jin, C. B.; Xiao, Y.; Yao, Y. X.; Xie, J.; Li, B. Q.; Zhang, X. Q.; Zhang, Q. A successive conversion—deintercalation delithiation mechanism for practical composite lithium anodes. J. Am. Chem. Soc. 2022, 144, 212–218.

    Article  CAS  Google Scholar 

  30. Kitada, K.; Pecher, O.; Magusin, P. C. M. M.; Groh, M. F.; Weatherup, R. S.; Grey, C. P. Unraveling the reaction mechanisms of SiO anodes for Li-ion batteries by combining in situ7Li and ex situ7Li/29Si solid-state NMR spectroscopy. J. Am. Chem. Soc. 2019, 141, 7014–7027.

    Article  CAS  Google Scholar 

  31. Choi, J.; Jeong, H.; Jang, J.; Jeon, A. R.; Kang, I.; Kwon, M.; Hong, J.; Lee, M. Weakly solvating solution enables chemical prelithiation of graphite-SiOx anodes for high-energy Li-ion batteries. J. Am. Chem. Soc. 2021, 143, 9169–9176.

    Article  CAS  Google Scholar 

  32. Li, Y.; Qian, Y.; Zhao, Y.; Lin, N.; Qian, Y. T. Revealing the interface—rectifying functions of a Li-cyanonaphthalene prelithiation system for SiO electrode. Sci. Bull. 2022, 67, 636–645.

    Article  CAS  Google Scholar 

  33. Li, Y.; Qian, Y.; Zhou, J.; Lin, N.; Qian, Y. T. Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial Coulombic efficiency. Nano Res. 2022, 15, 230–237.

    Article  Google Scholar 

  34. Bredar, A. R. C.; Chown, A. L.; Burton, A. R.; Farnum, B. H. Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater. 2020, 3, 66–98.

    Article  CAS  Google Scholar 

  35. Wu, W.; Wang, M.; Wang, J.; Wang, C. Y.; Deng, Y. H. Green design of Si/SiO2/C composites as high-performance anodes for lithium-ion batteries. ACS Appl. Energy Mater. 2020, 3, 3884–3892.

    Article  CAS  Google Scholar 

  36. Li, M. Q.; Yu, Y.; Li, J.; Chen, B. L.; Wu, X. W.; Tian, Y.; Chen, P. Nanosilica/carbon composite spheres as anodes in Li-ion batteries with excellent cycle stability. J. Mater. Chem. A 2015, 3, 1476–1482.

    Article  CAS  Google Scholar 

  37. Berhaut, C. L.; Dominguez, D. Z.; Tomasi, D.; Vincens, C.; Haon, C.; Reynier, Y.; Porcher, W.; Boudet, N.; Blanc, N.; Chahine, G. A. et al. Prelithiation of silicon/graphite composite anodes: Benefits and mechanisms for long-lasting Li-ion batteries. Energy Storage Mater. 2020, 29, 190–197.

    Article  Google Scholar 

  38. Yang, S. Y.; Shadike, Z.; Wang, W. W.; Yue, X. Y.; Xia, H. Y.; Bak, S. M.; Du, Y. H.; Li, H.; Fu, Z. W. An ultrathin solid-state electrolyte film coated on LiNi0.8Co0.1Mn0.1O2 electrode surface for enhanced performance of lithium-ion batteries. Energy Storage Mater. 2022, 45, 1165–1174.

    Article  Google Scholar 

  39. Tan, J.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 2021, 11, 2100046.

    Article  CAS  Google Scholar 

  40. Cheng, D. Y.; Wynn, T. A.; Wang, X. F.; Wang, S.; Zhang, M. H.; Shimizu, R.; Bai, S.; Nguyen, H.; Fang, C. C.; Kim, M. C. et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 2020, 4, 2484–2500.

    Article  CAS  Google Scholar 

  41. Schwöbel, A.; Hausbrand, R.; Jaegermann, W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ion. 2015, 273, 51–54.

    Article  Google Scholar 

  42. Cao, C. T.; Abate, I. I.; Sivonxay, E.; Shyam, B.; Jia, C. J.; Moritz, B.; Devereaux, T. P.; Persson, K. A.; Steinrück, H. G.; Toney, M. F. Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule 2019, 3, 762–781.

    Article  CAS  Google Scholar 

  43. Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.

    Article  CAS  Google Scholar 

  44. Jiang, F. Y.; Sun, Y.; Zhang, K. X.; Liu, Y. C.; Feng, X. Y.; Xiang, H. F. SiOx/C anodes with high initial Coulombic efficiency through the synergy effect of pre-lithiation and fluoroethylene carbonate for lithium-ion batteries. Electrochim. Acta 2021, 398, 139315.

    Article  CAS  Google Scholar 

  45. Kim, K.; Park, I.; Ha, S. Y.; Kim, Y.; Woo, M. H.; Jeong, M. H.; Shin, W. C.; Ue, M.; Hong, S. Y.; Choi, N. S. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries. Electrochim. Acta 2017, 225, 358–368.

    Article  CAS  Google Scholar 

  46. Ogata, K.; Jeon, S.; Ko, D. S.; Jung, I. S.; Kim, J. H.; Ito, K.; Kubo, Y.; Takei, K.; Saito, S.; Cho, Y. H. et al. Evolving affinity between Coulombic reversibility and hysteretic phase transformations in Nano-structured silicon-based lithium-ion batteries. Nat. Commun. 2018, 9, 479.

    Article  CAS  Google Scholar 

  47. Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 27, 1605989.

    Article  Google Scholar 

  48. Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.

    Article  CAS  Google Scholar 

  49. Zhang, X. H.; Cui, Z. H.; Manthiram, A. Insights into the crossover effects in cells with high-nickel layered oxide cathodes and silicon/graphite composite anodes. Adv. Energy Mater. 2022, 12, 2103611.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22279022), the Joint Funds of the National Natural Science Foundation of China (No. U20A20336) and the Tianmu Lake Institute of Advanced Energy Storage Technologies Scientist Studio Program (No. TIES-SS0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwen Fu.

Electronic Supplementary Material

12274_2022_5290_MOESM1_ESM.pdf

Solid-state corrosion of lithium for prelithiation of SiOx-C composite anode with carbon-incorporated lithium phosphorus oxynitride

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Yang, S., Ma, Z. et al. Solid-state corrosion of lithium for prelithiation of SiOx-C composite anode with carbon-incorporated lithium phosphorus oxynitride. Nano Res. 16, 8394–8404 (2023). https://doi.org/10.1007/s12274-022-5290-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5290-6

Keywords

Navigation