Skip to main content
Log in

A new isotropic negative thermal expansion material of CaSnF6 with facile and low-cost synthesis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Double ReO3-type fluorides have a great interest in the field of negative thermal expansion (NTE) and luminescent materials. However, their application is limited by the scarcity of quantity, expensive raw materials, and harsh preparation conditions. In this work we have found a new NTE material, CaSnF6, by applying the concept of the average atomic volume. More importantly, different from the previous solid-phase sintering and direct fluorination methods, the nano CaSnF6 has been synthesized for the first time by solvothermal method. The results of X-ray diffraction (XRD) and Raman spectroscopy show that a phase transition occurs from rhombohedral (\(R\bar 3\)) to cubic (\(Fm\bar 3m\)) structure at about 200 K, and a strong isotropic NTE (αv = −15.78 × 10−6 K−1) appears in the cubic phase. Lattice dynamics calculations from first-principles illustrate that the NTE is due to the transverse vibration of fluorine atoms excited by low-frequency phonons. This work not only broadens the NTE family of fluorides, but also provides a new facile and low-cost fabricati on method for the preparation of NTE fluorides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mary, T. A.; Evans, J. S. O.; Vogt, T.; Sleight, A. W. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 1996, 272, 90–92.

    CAS  Google Scholar 

  2. Pan, Z.; Fang, Y. W.; Nishikubo, T.; Hu, L.; Kawaguchi, S.; Azuma, M. Tolerance factor control of tetragonality and negative thermal expansion in PbTiO3-based ferroelectrics. Chem. Mater. 2022, 34, 2798–2803.

    CAS  Google Scholar 

  3. Shi, N. K.; Sanson, A.; Gao, Q. L.; Sun, Q.; Ren, Y.; Huang, Q. Z.; De Souza, D. O.; Xing, X. R.; Chen, J. Strong negative thermal expansion in a low-cost and facile oxide of Cu2P2O7. J. Am. Chem. Soc. 2020, 142, 3088–3093.

    CAS  Google Scholar 

  4. Wei, W.; Gao, Q. L.; Guo, J.; Chao, M. J.; He, L. H.; Chen, J.; Liang, E. J. Realizing isotropic negative thermal expansion covering room temperature by breaking the superstructure of ZrV2O7. Appl. Phys. Lett. 2020, 116, 181902.

    CAS  Google Scholar 

  5. Hester, B. R.; Hancock, J. C.; Lapidus, S. H.; Wilkinson, A. P. Composition, response to pressure, and negative thermal expansion in MIIBIVF6 (M = Ca, Mg; B = Zr, Nb). Chem. Mater. 2017, 29, 823–831.

    CAS  Google Scholar 

  6. Qiao, Y. Q.; Song, Y. Z.; Sanson, A.; Fan, L. L.; Sun, Q.; Hu, S. X.; He, L. H.; Zhang, H. J.; Xing, X. R.; Chen, J. Negative thermal expansion in YbMn2Ge2 induced by the dual effect of magnetism and valence transition. npj Quantum Mater. 2021, 6, 49.

    CAS  Google Scholar 

  7. Song, Y. Z.; Chen, J.; Liu, X. Z.; Wang, C. W.; Zhang, J.; Liu, H.; Zhu, H.; Hu, L.; Lin, K.; Zhang, S. T. et al. Zero thermal expansion in magnetic and metallic Tb(Co, Fe)2 intermetallic compounds. J Am. Chem. Soc. 2018, 140, 602–605.

    CAS  Google Scholar 

  8. Gao, Q. L.; Sun, Q.; Venier, A.; Sanson, A.; Huang, Q. Z.; Jia, Y.; Liang, E. J.; Chen, J. The role of average atomic volume in predicting negative thermal expansion: The case of REFe(CN)6. Sci. China Mater. 2022, 65, 553–557.

    Google Scholar 

  9. Gao, Q. L.; Jiao, Y. X.; Sanson, A.; Liang, E. J.; Sun, Q. Large negative thermal expansion in GdFe(CN)6 driven by unusual low-frequency modes. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.05.078.

  10. Gao, Q. L.; Jiao, Y. X.; Zheng, Y.; Sanson, A.; Milazzo, U.; Olivi, L.; Sun, Q.; Chen, J.; Liang, E. J. Understanding the role of guest ions in the control of thermal expansion of FeFe(CN)6. Results Phys. 2022, 36, 105410.

    Google Scholar 

  11. Wang, C.; Chu, L. H.; Yao, Q. R.; Sun, Y.; Wu, M. M.; Ding, L.; Yan, J.; Na, Y. Y.; Tang, W. H.; Li, G. N. et al. Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn, M)xN (M = Ag, Ge). Phys. Rev. B 2012, 85, 220103.

    Google Scholar 

  12. Asgari, M.; Kochetygov, I.; Abedini, H.; Queen, W. L. Large anisotropic negative thermal expansion in Cu-TDPAT metal-organic framework: A combined in situ X-ray diffraction and DRIFTS study. Nano Res. 2021, 14, 404–410.

    CAS  Google Scholar 

  13. Coates, C. S.; Goodwin, A. L. How to quantify isotropic negative thermal expansion: Magnitude, range, or both? Mater. Horiz. 2019, 6, 211–218.

    CAS  Google Scholar 

  14. Du, Y. G.; Gao, Q. L.; Sanson, A.; Xie, H. L.; Hu, Y. M.; Zeng, G. J.; Guo, J.; Ren, X.; Liang, E. J. Optimized negative thermal expansion property in low-cost Mg2P2O7-based bulk material. Results Phys. 2022, 35, 105415.

    Google Scholar 

  15. Yamamoto, H.; Imai, T.; Sakai, Y.; Azuma, M. Colossal negative thermal expansion in electron-doped PbVO3 perovskites. Angew. Chem., Int. Ed. 2018, 57, 8170–8173.

    CAS  Google Scholar 

  16. Huang, R. J.; Liu, Y. Y.; Fan, W.; Tan, J.; Xiao, F. R.; Qian, L. H.; Li, L. F. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. J. Am. Chem. Soc. 2013, 135, 11469–11472.

    CAS  Google Scholar 

  17. Rebello, A.; Neumeier, J. J.; Gao, Z. S.; Qi, Y. P.; Ma, Y. W. Giant negative thermal expansion in La-doped CaFe2As2. Phys. Rev. B 2012, 86, 104303.

    Google Scholar 

  18. Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P. Pronounced negative thermal expansion from a simple structure: Cubic ScF3. J. Am. Chem. Soc. 2010, 132, 15496–15498.

    CAS  Google Scholar 

  19. Hester, B. R.; Wilkinson, A. P. Negative thermal expansion, response to pressure and phase transitions in CaTiF6. Inorg. Chem. 2018, 57, 11275–11281.

    CAS  Google Scholar 

  20. Hancock, J. C.; Chapman, K. W.; Halder, G. J.; Morelock, C. R.; Kaplan, B. S.; Gallington, L. C.; Bongiorno, A.; Han, C.; Zhou, S.; Wilkinson, A. P. Large negative thermal expansion and anomalous behavior on compression in cubic ReO3-type AIIBIVF6: CaZrF6 and CaHfF6. Chem. Mater. 2015, 27, 3912–3918.

    CAS  Google Scholar 

  21. Hu, L.; Chen, J.; Xu, J. L.; Wang, N.; Han, F.; Ren, Y.; Pan, Z.; Rong, Y. C.; Huang, R. J.; Deng, J. X. et al. Atomic linkage flexibility tuned isotropic negative, zero, and positive thermal expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn). J. Am. Chem. Soc. 2016, 135, 14530–14533.

    Google Scholar 

  22. Xu, J. L.; Hu, L.; Song, Y. Z.; Han, F.; Qiao, Y. Q.; Deng, J. X.; Chen, J.; Xing, X. R. Zero thermal expansion in cubic MgZrF6. J. Am. Ceram. Soc. 2017, 100, 5385–5388.

    CAS  Google Scholar 

  23. Hu, L.; Chen, J.; Sanson, A.; Wu, H.; Rodriguez, C. G.; Olivi, L.; Ren, Y.; Fan, L. L.; Deng, J. X. et al. New insights into the negative thermal expansion: Direct experimental evidence for the “guitar-string” effect in cubic ScF3. J. Am. Chem. Soc. 2016, 138, 8320–8323.

    CAS  Google Scholar 

  24. Morelock, C. R.; Gallington, L. C.; Wilkinson, A. P. Solid solubility, phase transitions, thermal expansion, and compressibility in Sc1−xAlxF3. J. Solid State Chem. 2015, 222, 96–102.

    CAS  Google Scholar 

  25. Morelock, C. R.; Gallington, L. C.; Wilkinson, A. P. Evolution of negative thermal expansion and phase transitions in Sc1−xTixF3. Chem. Mater. 2014, 26, 1936–1940.

    CAS  Google Scholar 

  26. Hu, L.; Chen, J.; Fan, L. L.; Ren, Y.; Huang, Q. Z.; Sanson, A.; Jiang, Z.; Zhou, M.; Rong, Y. C.; Wang, Y. et al. High-curie-temperature ferromagnetism in (Sc, Fe)F3 fluorides and its dependence on chemical valence. Adv. Mater. 2015, 27, 4592–4596.

    CAS  Google Scholar 

  27. Morelock, C. R.; Greve, B. K.; Gallington, L. C.; Chapman, K. W.; Wilkinson, A. P. Negative thermal expansion and compressibility of Sc1−xYxF3 (x < 0.25). J. Appl. Phys. 2013, 114, 213501.

    Google Scholar 

  28. Hu, L.; Chen, J.; Fan, L. L.; Ren, Y.; Rong, Y. C.; Pan, Z.; Deng, J. X.; Yu, R. B.; Xing, X. R. Zero thermal expansion and ferromagnetism in cubic Sc1−xMxF3 (M = Ga, Fe) over a wide temperature range. J. Am. Chem. Soc. 2014, 136, 13566–13569.

    CAS  Google Scholar 

  29. Han, F.; Hu, L.; Liu, Z. N.; Li, Q.; Wang, T.; Ren, Y.; Deng, J. X.; Chen, J.; Xing, X. R. Local structure and controllable thermal expansion in the solid solution (Mn1−xNix)ZrF6. Inorg. Chem. Front. 2017, 4, 343–347.

    CAS  Google Scholar 

  30. Chen, J.; Gao, Q. L.; Sanson, A.; Jiang, X. X.; Huang, Q. Z.; Carnera, A.; Rodriguez, C. G.; Olivi, L.; Wang, L.; Hu, L. et al. Tunable thermal expansion in framework materials through redox intercalation. Nat. Commun. 2017, 5, 14441.

    Google Scholar 

  31. Yang, C.; Zhang, Y. G.; Bai, J. M.; Qu, B. Y.; Tong, P.; Wang, M.; Lin, J. C.; Zhang, R. R.; Tong, H. Y.; Wu, Y. et al. Crossover of thermal expansion from positive to negative by removing the excess fluorines in cubic ReO3-type TiZrF7−x. J. Mater. Chem. C 2018, 6, 5148–5152.

    CAS  Google Scholar 

  32. Wang, T.; Xu, J. L.; Hu, L.; Wang, W.; Huang, R. J.; Han, F.; Pan, Z.; Deng, J. X.; Ren, Y.; Li, L. F. et al. Tunable thermal expansion and magnetism in Zr-doped ScF3. Appl. Phys. Lett. 2016, 109, 181901.

    Google Scholar 

  33. Hu, L.; Qin, F. Y.; Sanson, A.; Huang, L. F.; Pan, Z.; Li, Q.; Sun, Q.; Wang, L.; Guo, F. M.; Aydemir, U. et al. Localized symmetry breaking for tuning thermal expansion in ScF3 nanoscale frameworks. J. Am. Chem. Soc. 2018, 140, 4477–4480.

    CAS  Google Scholar 

  34. Gao, X. L.; Song, Y.; Liu, G. X.; Dong, X. T.; Wang, J. X.; Yu, W. S. Narrow-band red emitting phosphor BaTiF6:Mn4+: Preparation, characterization and application for warm white LED devices. Dalton Trans. 2016, 45, 17886–17895.

    CAS  Google Scholar 

  35. Huang, X.; Jiang, Y. G.; Zhang, L. F.; Guan, F.; Wang, Z. Y.; Yuan, X. Q.; He, J.; Zhang, L. Low thermal expansion ZBLAN-based glass ceramics containing CaZrF6 crystals. J. Am. Ceram. Soc. 2022, 105, 3959–3966.

    CAS  Google Scholar 

  36. Ying, D. F.; Ding, R.; Huang, Y. F.; Yan, T.; Huang, Y. X.; Tan, C. N.; Sun, X. J.; Gao, P.; Liu, E. H. Conversion/alloying pseudocapacitance-dominated perovskite KZnF3 anode for advanced lithium-based dual-ion batteries. Chem.—Eur. J. 2020, 26, 2798–2802.

    CAS  Google Scholar 

  37. Lloyd II, A. J.; Hester, B. R.; Baxter, S. J.; Ma, S. Y.; Prakapenka, V. B.; Tkachev, S. N.; Park, C. Y.; Wilkinson, A. P. Hybrid double perovskite containing helium: [He2][CaZr]F6. Chem. Mater. 2021, 33, 3132–3138.

    Google Scholar 

  38. Gao, Q. L.; Wang, J. Q.; Sanson, A.; Sun, Q.; Liang, E. J.; Xing, X. R.; Chen, J. Discovering large isotropic negative thermal expansion in framework compound AgB(CN)4 via the concept of average atomic volume. J. Am. Chem. Soc. 2020, 142, 6935–6939.

    CAS  Google Scholar 

  39. Gaudon, M.; Salek, G.; Kande, M.; Andron, I.; Frayret, C.; Durand, E.; Penin, N.; Duttine, M.; Wattiaux, A.; Jubera, V. CaSn(OH)6hydroxides, CaSnO3 oxides and CaSnF6 fluorides: Synthesis and structural filiation. Cationic environment impact on Pr3+ doped compounds luminescence. J. Solid State Chem. 2018, 265, 291–298.

    CAS  Google Scholar 

  40. Rimmer, L. H. N.; Dove, M. T.; Goodwin, A. L.; Palmer, D. C. Acoustic phonons and negative thermal expansion in MOF-5. Phys. Chem. Chem. Phys. 2014, 16, 21144–21152.

    CAS  Google Scholar 

  41. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  42. Wang, Z. Y.; Wang, F.; Wang, L.; Jia, Y.; Su, Q. First-principles study of negative thermal expansion in zinc oxide. J. Appl. Phys. 2013, 114, 063508.

    Google Scholar 

  43. Gupta, M. K.; Singh, B.; Mittal, R.; Rols, S.; Chaplot, S. L. Lattice dynamics and thermal expansion behavior in the metal cyanides MCN (M = Cu, Ag, Au): Neutron inelastic scattering and first-principles calculations. Phys. Rev. B 2016, 93, 134307.

    Google Scholar 

  44. Karsch, F.; Patkós, A.; Petreczky, P. Screened perturbation theory. Phys. Lett. B 1997, 401, 69–73.

    CAS  Google Scholar 

  45. Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063–4066.

    CAS  Google Scholar 

  46. Ernst, G.; Broholm, C.; Kowach, G. R.; Ramirez, A. P. Phonon density of states and negative thermal expansion in ZrW2O8. Nature 1998, 396, 147–149.

    CAS  Google Scholar 

  47. Bandemehr, J.; Baumann, D.; Seibald, M.; Eklund, K.; Karttunen, A. J.; Kraus, F. Mn(IV)-substituted metal(II) hexafluorido metallates(IV): Synthesis, crystal structures, and luminescence properties. Eur. J. Inorg. Chem. 2021, 2021, 3861–3869.

    CAS  Google Scholar 

  48. Moehs, P. J.; Haendler, H. M. Fluorination of metal stannates. Inorg. Chem. 1968, 7, 2115–2118.

    CAS  Google Scholar 

  49. Hoffman, J. B.; Schleper, A. L.; Kamat, P. V. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3−x through halide exchange. J. Am. Chem. Soc. 2016, 138, 8603–8611.

    CAS  Google Scholar 

  50. Habibi, E.; Zahedifar, M.; Sadeghi, E. Synthesis and thermoluminescence analysis of LiBaF3: M (M = Cu, Ce, Er) nanoparticles. J. Lumin. 2021, 237, 118173.

    CAS  Google Scholar 

  51. Jiang, X. Y.; Pan, Y. X.; Huang, S. M.; Chen, X. A.; Wang, J. G.; Liu, G. K. Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6: Mn4+ for LED applications. J Mater. Chem. C 2014, 2, 2301–2306.

    CAS  Google Scholar 

  52. Zhu, X. H.; Zhang, Z.; Shen, J. Kinetics and mechanism of adsorption of phosphate on fluorine-containing calcium silicate. J. Wuhan Univ. Technol. 2016, 31, 321–327.

    CAS  Google Scholar 

  53. Amalraj, A.; Pavadai, R.; Perumal, P. Recyclable target metalenhanced fluorometric naked eye aptasensor for the detection of Pb2+ and Ag+ ions based on the structural change of CaSnO3@PDANS-constrained GC-rich ssDNA. ACS Omega 2021, 6, 30580–30597.

    CAS  Google Scholar 

  54. Pollak, R. A.; Ley, L.; McFeely, F. R.; Kowalczyk, S. P.; Shirley, D. A. Characteristic energy loss structure of solids from X-ray photoemission spectra. J. Electron Spectrosc. Relat. Phenom. 1974, 3, 381–398.

    CAS  Google Scholar 

  55. Mayer, H. W.; Reinen, D.; Heger, G. Struktur und bindung in Übergangsmetall-fluoriden MIIMeIVF6: Neutronenbeugungs-strukturuntersuchungen an CaSnF6, FeZrF6, und CrZrF6. J. Solid State Chem. 1983, 50, 213–224.

    CAS  Google Scholar 

  56. Sanson, A. On the switching between negative and positive thermal expansion in framework materials. Mater. Res. Lett. 2019, 7, 412–417.

    CAS  Google Scholar 

  57. Chapman, K. W.; Chupas, P. J.; Kepert, C. J. Compositional dependence of negative thermal expansion in the prussian blue analogues MIIPtIV(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd). J. Am. Chem. Soc. 2006, 128, 7009–7014.

    CAS  Google Scholar 

  58. Barrera, G. D.; Bruno, J. A. O.; Barron, T. H. K.; Allan, N. L. Negative thermal expansion. J. Phys.: Condens. Matter 2005, 17, R217–R252.

    CAS  Google Scholar 

  59. Gao, Q. L.; Shi, N. K.; Sun, Q.; Sanson, A.; Milazzo, R.; Carnera, A.; Zhu, H.; Lapidus, S. H.; Ren, Y.; Huang, Q. Z. et al. Low-frequency phonon driven negative thermal expansion in cubic GaFe(CN)6 prussian blue analogues. Inorg. Chem. 2018, 57, 10918–10924.

    CAS  Google Scholar 

  60. Liu, J. Z.; Jiao, Y. X.; Gao, Q. L.; Sun, Q.; Chen, J. Illuminating the negative thermal expansion mechanism of YFe(CN)6 via electronic structure and unusual phonon modes. J. Rare Earths, in press, https://doi.org/10.1016/j.jre.2022.07.011.

  61. Gao, Y. X.; Wang, C. Y.; Gao, Q. L.; Guo, J.; Chao, M. J.; Jia, Y.; Liang, E. J. Zero thermal expansion in Ta2Mo2O11 by compensation effects. Inorg. Chem. 2020, 59, 18427–18431.

    CAS  Google Scholar 

  62. Sanson, A.; Giarola, M.; Mariotto, J.; Hu, L.; Chen, J.; Xing, X. R. Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations. Mater. Chem. Phys. 2016, 180, 213–218.

    CAS  Google Scholar 

  63. Yang, C.; Qu, B. Y.; Pan, S. S.; Zhang, L.; Zhang, R. R.; Tong, P.; Xiao, R. C.; Lin, J. C.; Guo, X. G.; Zhang, K. et al. Large positive thermal expansion and small band gap in double-ReO3-type compound NaSbF6. Inorg. Chem. 2017, 56, 4990–4995.

    CAS  Google Scholar 

  64. Gao, Q. L.; Sun, Y.; Shi, N. K.; Milazzo, R.; Pollastri, S.; Olivi, L.; Huang, Q. Z.; Liu, H.; Sanson, A.; Sun, Q. et al. Large isotropic negative thermal expansion in water-free Prussian blue analogues of ScCo(CN)6. Scripta Mater. 2020, 187, 119–124.

    CAS  Google Scholar 

  65. Lan, T.; Tang, X. L.; Fultz, B. Phonon anharmonicity of rutile TiO2studied by Raman spectrometry and molecular dynamics simulations. Phys. Rev. B 2012, 85, 094305.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22071221 and 21905252) and Natural Science Foundation of Henan Province (Nos. 212300410086, 222301420040 and 222300420325). All calculations were supported by the National Supercomputing Center in Zhengzhou.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qilong Gao, Yongqiang Qiao or Xinwei Shi.

Electronic supplementary material

12274_2022_5288_MOESM1_ESM.pdf

Electronic Supplementary Material: A new isotropic negative thermal expansion material of CaSnF6 with facile and low-cost synthesis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Zhang, S., Jiao, Y. et al. A new isotropic negative thermal expansion material of CaSnF6 with facile and low-cost synthesis. Nano Res. 16, 5964–5972 (2023). https://doi.org/10.1007/s12274-022-5288-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5288-0

Keywords

Navigation