Skip to main content
Log in

Facile preparation of multifunctional Cu2−xS/S/rGO composite for all-round residual water remediation during interfacial solar driven water evaporation process

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Presently, interfacial solar water evaporation (ISWE) is now injecting new vitality into the field of water remediation. However, during the ISWE process, the nonvolatile pollutants might be concentrated in residual water, and further contaminate the environment. Preparing advanced photothermal materials is in need to get comprehensive purification of various pollutants in residual water. Herein, we report a facile laser thermal method to prepare Cu2−xS/sulfur/reduced graphene oxide (Cu2−xS/S/rGO) nanocomposites for realizing all-round residual water remediation during the ISWE process. The as-prepared Cu2−xS/S/rGO nanocomposites demonstrated excellent photothermal and photocatalytic properties. Through blending with GO nanosheets having excellent adsorption capacity, the synergetic effect of photothermal, photocatalytic, and adsorption properties resulted in highly efficient purification of rhodamine B, bacterial, and heavy metal ions in residual water during the ISWE process. The experimental results also showed that, increasing solar light intensity can promote the residual water remediation, but ultrafast water evaporation under high light intensity may deteriorate the purifying effect. This report may pave a new way to prepare multifunctional materials for water remediation through the ISWE technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. F.; Liu, H. X.; Gao, F. X.; Tan, X. L.; Cai, Y. W.; Hu, B. W.; Huang, Q. F.; Fang, M.; Wang, X. K. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem 2022, 4, 100078.

    CAS  Google Scholar 

  2. Liu, X. L.; Verma, G.; Chen, Z. S.; Hu, B. W.; Huang, Q. F.; Yang, H.; Ma, S. Q.; Wang, X. K. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation 2022, 3, 100281.

    CAS  Google Scholar 

  3. Dao, V. D.; Vu, N. H.; Yun, S. N. Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy 2020, 68, 104324.

    CAS  Google Scholar 

  4. Wu, P.; Wu, X.; Wang, Y. D.; Xu, H. L.; Owens, G. Towards sustainable saline agriculture: Interfacial solar evaporation for simultaneous seawater desalination and saline soil remediation. Water Res. 2022, 212, 118099.

    CAS  Google Scholar 

  5. Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

    CAS  Google Scholar 

  6. Ibrahim, I.; Seo, D. H.; Park, M. J.; Angeloski, A.; McDonagh, A.; Bendavid, A.; Shon, H. K.; Tijing, L. Highly stable gold nanolayer membrane for efficient solar water evaporation under a harsh environment. Chemosphere 2022, 299, 134394.

    CAS  Google Scholar 

  7. Go, K.; Bae, K.; Choi, H.; Kim, H. Y.; Lee, K. J. Solar-to-steam generation via porous black membranes with tailored pore structures. ACS Appl. Mater. Interfaces 2019, 11, 48300–48308.

    CAS  Google Scholar 

  8. Sun, Y. R.; Yu, F.; Li, C.; Dai, X. H.; Ma, J. Nano-/micro-confined water in graphene hydrogel as superadsorbents for water purification. Nano-Micro Lett. 2020, 12, 2.

    Google Scholar 

  9. Yang, H. F.; Liu, Y. S.; Qiao, Z. Q.; Li, X. D.; Wang, Y. C.; Bao, H. B.; Yang, G. C.; Li, X. M. One-step ultrafast deflagration synthesis of N-doped WO2.9 nanorods for solar water evaporation. Appl. Surf. Sci. 2021, 555, 149697.

    CAS  Google Scholar 

  10. Wu, X.; Wu, Z. Q.; Wang, Y. D.; Gao, T.; Li, Q.; Xu, H. L. All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 2021, 8, 2002501.

    CAS  Google Scholar 

  11. Li, X. Q.; Min, X. Z.; Li, J. L.; Xu, N.; Zhu, P. C.; Zhu, B.; Zhu, S. N.; Zhu, J. Storage and recycling of interfacial solar steam enthalpy. Joule 2018, 2, 2477–2484.

    Google Scholar 

  12. Noureen, L.; Xie, Z. J.; Gao, Y. J.; Li, M. M.; Hussain, M.; Wang, K.; Zhang, L. B.; Zhu, J. T. Multifunctional Ag3PO4-rGO-coated textiles for clean water production by solar-driven evaporation, photocatalysis, and disinfection. ACS Appl. Mater. Interfaces 2020, 12, 6343–6350.

    CAS  Google Scholar 

  13. Djellabi, R.; Noureen, L.; Dao, V. D.; Meroni, D.; Falletta, E.; Dionysiou, D. D.; Bianchi, C. L. Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect. Chem. Eng. J. 2022, 431, 134024.

    CAS  Google Scholar 

  14. Li, H.; Li, L.; Xiong, L.; Wang, B. B.; Wang, G.; Ma, S. H.; Han, X. J. SiO2/mxene/poly (tetrafluoroethylene)-based janus membranes as solar absorbers for solar steam generation. ACS Appl. Nano Mater. 2021, 4, 14274–14284.

    CAS  Google Scholar 

  15. Dao, V. D.; Choi, H. S. Carbon-based sunlight absorbers in solar-driven steam generation devices. Glob Chall. 2018, 2, 1700094.

    Google Scholar 

  16. Xie, H.; Xu, W. H.; Du, Y.; Gong, J.; Niu, R.; Wu, T.; Qu, J. P. Cost-effective fabrication of micro-nanostructured superhydrophobic polyethylene/graphene foam with self-floating, optical trapping, acid/alkali resistance for efficient photothermal deicing and interfacial evaporation. Small 2022, 18, 2200175.

    CAS  Google Scholar 

  17. Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.

    Google Scholar 

  18. Liu, X. H.; Cheng, H. Y.; Guo, Z. Z.; Zhan, Q.; Qian, J. W.; Wang, X. B. Bifunctional, moth-eye-like nanostructured black titania nanocomposites for solar-driven clean water generation. ACS Appl. Mater. Interfaces 2018, 10, 39661–39669.

    CAS  Google Scholar 

  19. Kim, Y. E.; Lim, J.; Lee, H.; Lee, E.; Kim, D. Y.; Jun, Y. S.; Han, J. H.; Lee, S. H. Solar-driven enhanced chemical adsorption and interfacial evaporation using porous graphene-based spherical composites. Chemosphere 2022, 291, 133013.

    CAS  Google Scholar 

  20. Vazquez-Jaime, M.; Arcibar-Orozco, J. A.; Damian-Ascencio, C. E.; Saldaña-Robles, A. L.; Martínez-Rosales, M.; Saldaña-Robles, A.; Cano-Andrade, S. Effective removal of arsenic from an aqueous solution by ferrihydrite/goethite graphene oxide composites using the modified hummers method. J. Environ. Chem. Eng. 2020, 8, 104416.

    CAS  Google Scholar 

  21. Zhang, P.; He, P.; Zhao, Y.; Yang, S.; Yu, Q.; Xie, X.; Ding, G. Oxidating fresh porous graphene networks toward ultra-large graphene oxide with electrical conductivity. Adv. Funct. Mater. 2022, 32, 2202697.

    CAS  Google Scholar 

  22. Yu, H.; He, Y.; Xiao, G. Q.; Fan, Y.; Ma, J.; Gao, Y. X.; Hou, R. T.; Chen, J. Y. Weak-reduction graphene oxide membrane for improving water purification performance. J. Mater. Sci. Technol. 2020, 39, 106–112.

    CAS  Google Scholar 

  23. Tan, D. Z.; Liu, X. F.; Qiu, J. R. Photochemical synthesis of doped graphene quantum dots and their photoluminescence in aqueous and solid states. RSC Adv. 2015, 5, 84276–84279.

    CAS  Google Scholar 

  24. Saedi, S.; Shokri, M.; Rhim, J. W. Antimicrobial activity of sulfur nanoparticles: Effect of preparation methods. Arabian J. Chem. 2020, 13, 6580–6588.

    CAS  Google Scholar 

  25. Meng, F. T.; Zhang, Y. A.; Zhang, S. F.; Ju, B. Z.; Tang, B. T. Polysulfide nanoparticles-reduced graphene oxide composite aerogel for efficient solar-driven water purification. Green Energy Environ., in press, https://doi.org/10.1016/j.gee.2021.04.004.

  26. Chen, Y.; Su, R. D.; Wang, F. D.; Zhou, W. Z.; Gao, B. Y.; Yue, Q. Y.; Li, Q. In-situ synthesis of CuS@carbon nanocomposites and application in enhanced photo-Fenton degradation of 2,4-DCP. Chemosphere 2020, 270, 129295.

    Google Scholar 

  27. Raj, S. I.; Jaiswal, A. Nanoscale transformation in CuS Fenton-like catalyst for highly selective and enhanced dye degradation. J. Photochem. Photobiol. A: Chem. 2021, 410, 113158.

    CAS  Google Scholar 

  28. Zhang, J.; Xing, T. Y.; Zhang, M.; Zhou, Y. L. Facile preparation of Cu2−xS supernanoparticles with an unambiguous SERS enhancement mechanism. Chem. Eng. J. 2022, 434, 134457.

    CAS  Google Scholar 

  29. Huang, W.; Liu, F. P.; Huang, Y. Y.; Yang, W.; Zhong, H. F.; Peng, J. Y. Facile one-pot synthesis of hollow-structured CuS/Cu2S hybrid for enhanced electrochemical determination of glucose. Electrochemistry 2021, 89, 340–347.

    CAS  Google Scholar 

  30. Li, M.; Yang, X. J.; Ren, J. S.; Qu, K. G.; Qu, X. G. Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease. Adv. Mater. 2012, 24, 1722–1728.

    CAS  Google Scholar 

  31. Wu, X.; Robson, M. E.; Phelps, J. L.; Tan, J. S.; Shao, B.; Owens, G.; Xu, H. L. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy 2019, 56, 708–715.

    CAS  Google Scholar 

  32. Li, X. D.; Liang, L.; Sun, Y. F.; Xu, J. Q.; Jiao, X. C.; Xu, X. L.; Ju, H. X.; Pan, Y.; Zhu, J. F.; Xie, Y. Ultrathin conductor enabling efficient IR light CO2 reduction. J. Am. Chem. Soc. 2019, 141, 423–430.

    CAS  Google Scholar 

  33. Yan, S. W.; Song, H. J.; Li, Y.; Yang, J.; Jia, X. H.; Wang, S. Z.; Yang, X. F. Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation. Appl. Catal. B: Environ. 2022, 301, 120820.

    CAS  Google Scholar 

  34. Hou, Q.; Xue, C. R.; Li, N.; Wang, H. Q.; Chang, Q.; Liu, H. T.; Yang, J. L.; Hu, S. L. Self-assembly carbon dots for powerful solar water evaporation. Carbon 2019, 149, 556–563.

    CAS  Google Scholar 

  35. Shi, Y. Y.; Zhang, C. F.; Wang, Y. H.; Cui, Y. M.; Wang, Q. Y.; Liu, G. J.; Gao, S. M.; Yuan, Y. F. Plasmonic silver nanoparticles embedded in flexible three-dimensional carbonized melamine foam with enhanced solar-driven water evaporation. Desalination 2021, 507, 115038.

    CAS  Google Scholar 

  36. Liu, Z. X.; Zhou, Z.; Wu, N. Y.; Zhang, R. Q.; Zhu, B.; Jin, H.; Zhang, Y. M.; Zhu, M. F.; Chen, Z. G. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 2021, 15, 13007–13018.

    CAS  Google Scholar 

  37. Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

    CAS  Google Scholar 

  38. Wang, J. T.; Hong, J. L. Effect of folding on 3D photothermal cones with efficient solar-driven water evaporation. Appl. Therm. Eng. 2020, 178, 115636.

    CAS  Google Scholar 

  39. Jiang, L. S.; Wang, K.; Wu, X. Y.; Zhang, G. K. Highly enhanced full solar spectrum-driven photocatalytic CO2 reduction performance in Cu2-xS/g-C3N4 composite: Efficient charge transfer and mechanism insight. Sol. RRL 2021, 5, 2000326.

    CAS  Google Scholar 

  40. Shen, L. H.; Wei, J. H.; Liu, Z. F.; Bai, Z. W.; Li, Y. G.; Zhang, D. D.; Zhang, C. X. Stable layered sulfur nanosheets prepared by one-step liquid-phase exfoliation of natural sublimed sulfur with bovine serum albumin for photocatalysis. Chem. Mater. 2020, 32, 10476–10481.

    CAS  Google Scholar 

  41. Hao, D. D.; Yang, Y. D.; Xu, B.; Cai, Z. S. Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation. ACS Sustainable Chem. Eng. 2018, 6, 10789–10797.

    CAS  Google Scholar 

  42. Vatandost, E.; Saraei, A. G. H.; Chekin, F.; Raeisi, S. N.; Shahidi, S. A. Antioxidant, antibacterial and anticancer performance of reduced graphene oxide prepared via green tea extract assisted biosynthesis. ChemistrySelect 2020, 5, 10401–10406.

    CAS  Google Scholar 

  43. Zhang, Z.; Sun, J. Y.; Mo, S. D.; Kim, J.; Guo, D. G.; Ju, J.; Yu, Q. L.; Liu, M. Y. Constructing a highly efficient CuS/Cu9S5 heterojunction with boosted interfacial charge transfer for near-infrared photocatalytic disinfection. Chem. Eng. J. 2022, 431, 134287.

    CAS  Google Scholar 

  44. Song, C. Q.; Li, T. C.; Guo, W.; Gao, Y.; Yang, C. Y.; Zhang, Q.; An, D.; Huang, W. C.; Yan, M.; Guo, C. S. Hydrophobic Cu12Sb4S13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity. New J. Chem. 2018, 42, 3175–3179.

    CAS  Google Scholar 

  45. Tang, Y. N.; Qin, Z.; Zhong, Y. H.; Yin, S. Y.; Liang, S.; Sun, H. Three-phase interface photocatalysis for the enhanced degradation and antibacterial property. J. Colloid Interface Sci. 2022, 612, 194–202.

    CAS  Google Scholar 

  46. Dong, C. C.; Lu, J.; Qiu, B. C.; Shen, B.; Xing, M. Y.; Zhang, J. L. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Appl. Catal. B: Environ. 2018, 222, 146–156.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the key research and development program of Shanxi Province (International Cooperation) (No. 201903D421082), Natural Science Foundation of Shanxi Province (No. 20210302123029), the National Natural Science Foundation of China (Nos. 51602292 and 22105181), Scientific and Technological Innovation Programs of Higher Education in Shanxi (Nos. 2019L0589 and 2020L0279).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaorui Xue or Shengliang Hu.

Electronic Supplementary Material

12274_2022_5225_MOESM1_ESM.pdf

Facile preparation of multifunctional Cu2−xS/S/rGO composite for all-round residual water remediation during interfacial solar driven water evaporation process

12274_2022_5225_MOESM2_ESM.pdf

Facile preparation of multifunctional Cu2−xS/S/rGO composite for all-round residual water remediation during interfacial solar driven water evaporation process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, C., Shen, Y., Zhang, Q. et al. Facile preparation of multifunctional Cu2−xS/S/rGO composite for all-round residual water remediation during interfacial solar driven water evaporation process. Nano Res. 16, 5953–5963 (2023). https://doi.org/10.1007/s12274-022-5225-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5225-2

Keywords

Navigation