Skip to main content
Log in

Engineering miniature gold nanorods with tailorable plasmonic wavelength in NIR region via ternary surfactants mediated growth

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Plasmonic nanoparticles are endowed profound capability for sensing, biomedicine, and cancer therapy. However, the inaccessibly adjustable wavelength in near infrared (NIR) region window and size limit for the particles penetration in tumor strongly hinder their developments. Miniature gold nanorods (mini-Au NRs) with diameter less than 12 nm can effectively address this challenge due to the tiny size and tailorable NIR absorption. Herein, we adopt ternary surfactants (hexadecyl trimethyl ammonium bromide (CTAB), sodium oleate (NaOL), and sodium salicylate (NaSal)) mediated growth strategy to precisely synthesize miniature Au NRs under micelle space-confinement. Importantly, the selectively dense accumulation of ternary surfactants can efficiently improve the micellar stacking parameters (p) and lower micellar free energy (F), further tends to achieve the formation of Au NRs with tiny diameter and high purity. Compared with that of conventional methods, the purity of mini-Au NRs up to 100% can be dramatically improved via varying the relative concentration of ternary surfactants. The diameter of Au NRs can be dynamically controlled to 6, 8, and 11 nm through regulating the concentration of silver nitrate and the mole ratio of ternary surfactants. Such ternary surfactants system is favorable for the aging of tiny Au NRs, and further enables the aspect ratio-tunable in the region from 2.70 to 7.32, as well as tailorable plasmonic wavelength in wide NIR window from 700 to 1,147 nm. Therefore, our findings shed a light on the precise preparation of small sized plasmonic nanoparticles and pave the way to applications in biomedicine, imaging, and cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, J. P.; Cheng, X. Z.; Zhang, H.; Bai, X. P.; Ai, R. Q.; Shao, L.; Wang, J. F. Gold nanorods: The most versatile plasmonic nanoparticles. Chem. Rev. 2021, 121, 13342–13453.

    CAS  Google Scholar 

  2. González-Rubio, G.; Díaz-Núñez, P.; Rivera, A.; Prada, A.; Tardajos, G.; González-Izquierdo, J.; Bañares, L.; Llombart, P.; Macdowell, L. G.; Palafox, M. A. et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 2017, 358, 640–644.

    Google Scholar 

  3. Li, M.; Ding, C. P.; Jia, P. D.; Guo, L. H.; Wang, S.; Guo, Z. Y.; Su, F. M.; Huang, Y. J. Semi-quantitative detection of p-aminophenol in real samples with colorfully naked-eye assay. Sens. Actuators B: Chem. 2021, 334, 129604.

    CAS  Google Scholar 

  4. Song, L. P.; Chen, J.; Xu, B. B.; Huang, Y. J. Flexible plasmonic biosensors for healthcare monitoring: Progress and prospects. ACS Nano 2021, 15, 18822–18847.

    CAS  Google Scholar 

  5. Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

    Google Scholar 

  6. Jia, P. D.; Ding, C. P.; Sun, Z. W.; Song, L. P.; Zhang, D.; Yan, Z. J.; Zhang, Z. L.; Su, F. M.; Mostafa, A. A.; Huang, Y. J. DNA precisely regulated Au nanorods/Ag2S quantum dots satellite structure for ultrasensitive detection of prostate cancer biomarker. Sens. Actuators B: Chem. 2021, 347, 130585.

    CAS  Google Scholar 

  7. Jin, L. J.; Shen, S.; Huang, Y. J.; Li, D. D.; Yang, X. Z. Corn-like Au/Ag nanorod-mediated NIR-II photothermal/photodynamic therapy potentiates immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Biomaterials 2021, 268, 120582.

    CAS  Google Scholar 

  8. Song, L. P.; Xu, B. B.; Cheng, Q.; Wang, X. Y.; Luo, X. N.; Chen, X.; Chen, T.; Huang, Y. J. Instant interfacial self-assembly for homogeneous nanoparticle monolayer enabled conformal “lift-on” thin film technology. Sci. Adv. 2021, 7, eabk2852.

    CAS  Google Scholar 

  9. Irvine, D. J.; Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 2020, 20, 321–334.

    CAS  Google Scholar 

  10. van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W. J. M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017.

    CAS  Google Scholar 

  11. Song, L. P.; Qiu, N. X.; Huang, Y. J.; Cheng, Q.; Yang, Y. P.; Lin, H.; Su, F. M.; Chen, T. Macroscopic orientational gold nanorods monolayer film with excellent photothermal anticounterfeiting performance. Adv. Opt. Mater. 2020, 8, 1902082.

    CAS  Google Scholar 

  12. Chen, H. J.; Shao, L.; Ming, T.; Sun, Z. H.; Zhao, C. M.; Yang, B. C.; Wang, J. F. Understanding the photothermal conversion efficiency of gold nanocrystals. Small 2010, 6, 2272–2280.

    CAS  Google Scholar 

  13. Chen, Y. S.; Zhao, Y.; Yoon, S. J.; Gambhir, S. S.; Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 2019, 14, 465–472.

    CAS  Google Scholar 

  14. Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.

    CAS  Google Scholar 

  15. Lai, J. P.; Zhang, L.; Niu, W. X.; Qi, W. J.; Zhao, J. M.; Liu, Z. Y.; Zhang, W.; Xu, G. B. One-pot synthesis of gold nanorods using binary surfactant systems with improved monodispersity, dimensional tunability and plasmon resonance scattering properties. Nanotechnology 2014, 25, 125601.

    Google Scholar 

  16. Lyu, Y.; Li, J. C.; Pu, K. Y. Second near-infrared absorbing agents for photoacoustic imaging and photothermal therapy. Small Methods 2019, 3, 1900553.

    CAS  Google Scholar 

  17. Lu, S. Y.; Xue, L. R.; Yang, M.; Wang, J. J.; Li, Y.; Jiang, Y. X.; Hong, X. C.; Wu, M. F.; Xiao, Y. L. NIR-II fluorescence/photoacoustic imaging of ovarian cancer and peritoneal metastasis. Nano Res. 2022, 15, 9183–9191.

    CAS  Google Scholar 

  18. Cai, K.; Zhang, W. Y.; Foda, M. F.; Li, X. Y.; Zhang, J.; Zhong, Y. T.; Liang, H. G.; Li, H. Q.; Han, H. Y.; Zhai, T. Y. Miniature hollow gold nanorods with enhanced effect for in vivo photoacoustic imaging in the NIR-II window. Small 2020, 16, 2002748.

    CAS  Google Scholar 

  19. Yang, X.; Chen, Y. H.; Zhang, X.; Xue, P.; Lv, P. F.; Yang, Y. Z.; Wang, L.; Feng, W. Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano Today 2022, 43, 101419.

    CAS  Google Scholar 

  20. Du, Y. Y.; Han, M. D.; Cao, K. X.; Li, Q.; Pang, J. X.; Dou, L. P.; Liu, S. J.; Shi, Z.; Yan, F.; Feng, S. H. Gold nanorods exhibit intrinsic therapeutic activity via controlling N6-methyladenosine-based epitranscriptomics in acute myeloid leukemia. ACS Nano 2021, 15, 17689–17704.

    CAS  Google Scholar 

  21. Kim, F.; Song, J. H.; Yang, P. D. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 2002, 124, 14316–14317.

    CAS  Google Scholar 

  22. Abdelmoti, L. G.; Zamborini, F. P. Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces. Langmuir 2010, 26, 13511–13521.

    CAS  Google Scholar 

  23. Lohse, S. E.; Eller, J. R.; Sivapalan, S. T.; Plews, M. R.; Murphy, C. J. A simple millifluidic benchtop reactor system for the high-throughput synthesis and functionalization of gold nanoparticles with different sizes and shapes. ACS Nano 2013, 7, 4135–4150.

    CAS  Google Scholar 

  24. Wang, Y. D.; Abb, M.; Boden, S. A.; Aizpurua, J.; de Groot, C. H.; Muskens, O. L. Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling. Nano Lett. 2013, 13, 5647–5653.

    CAS  Google Scholar 

  25. Ali, M. R. K.; Snyder, B.; El-Sayed, M. A. Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 2012, 28, 9807–9815.

    CAS  Google Scholar 

  26. Ali, M. R. K.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.; Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P. et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl. Acad. Sci. USA 2017, 114, E3110–E3118.

    CAS  Google Scholar 

  27. Shibu, E. S.; Varkentina, N.; Cognet, L.; Lounis, B. Small gold nanorods with tunable absorption for photothermal microscopy in cells. Adv. Sci. 2017, 4, 1600280.

    Google Scholar 

  28. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    CAS  Google Scholar 

  29. Chang, H. H.; Murphy, C. J. Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm. Chem. Mater. 2018, 30, 1427–1435.

    CAS  Google Scholar 

  30. Vigderman, L.; Zubarev, E. R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chem. Mater. 2013, 25, 1450–1457.

    CAS  Google Scholar 

  31. Jia, H. L.; Fang, C. H.; Zhu, X. M.; Ruan, Q. F.; Wang, Y. X. J.; Wang, J. F. Synthesis of absorption-dominant small gold nanorods and their plasmonic properties. Langmuir 2015, 31, 7418–7426.

    CAS  Google Scholar 

  32. Dai, L. W.; Song, L. P.; Huang, Y. J.; Zhang, L.; Lu, X. F.; Zhang, J. W.; Chen, T. Bimetallic Au/Ag core—shell superstructures with tunable surface plasmon resonance in the near-infrared region and high performance surface-enhanced Raman scattering. Langmuir 2017, 33, 5378–5384.

    CAS  Google Scholar 

  33. Zhuo, X. L.; Mychinko, M.; Heyvaert, W.; Larios, D.; Obelleiro-Liz, M.; Taboada, J. M.; Bals, S.; Liz-Marzan, L. M. Morphological and optical transitions during micelle-seeded chiral growth on gold nanorods. ACS Nano 2022, 16, 19281–19292.

    CAS  Google Scholar 

  34. Bakshi, M. S. How surfactants control crystal growth of nanomaterials. Cryst. Growth Des. 2016, 16, 1104–1133.

    CAS  Google Scholar 

  35. Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765–1770.

    CAS  Google Scholar 

  36. Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.

    CAS  Google Scholar 

  37. Gallagher, R.; Zhang, X.; Altomare, A.; Lawrence, D.; Shawver, N.; Tran, N.; Beazley, M.; Chen, G. pH-mediated synthesis of monodisperse gold nanorods with quantitative yield and molecular level insight. Nano Res. 2021, 14, 1167–1174.

    CAS  Google Scholar 

  38. Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y. J.; Engheta, N.; Kagan, C. R. et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817.

    CAS  Google Scholar 

  39. Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.

    CAS  Google Scholar 

  40. Murphy, C. J.; Thompson, L. B.; Chernak, D. J.; Yang, J. A.; Sivapalan, S. T.; Boulos, S. P.; Huang, J. Y.; Alkilany, A. M.; Sisco, P. N. Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Curr. Opin. Colloid Interface Sci. 2011, 16, 128–134.

    CAS  Google Scholar 

  41. Lutz-Bueno, V.; Isabettini, S.; Walker, F.; Kuster, S.; Liebi, M.; Fischer, P. Ionic micelles and aromatic additives: A closer look at the molecular packing parameter. Phys. Chem. Chem. Phys. 2017, 19, 21869–21877.

    CAS  Google Scholar 

  42. Aswal, V. K.; Goyal, P. S.; Thiyagarajan, P. Small-angle neutron-scattering and viscosity studies of CTAB/NaSal viscoelastic micellar solutions. J. Phys. Chem. B 1998, 102, 2469–2473.

    CAS  Google Scholar 

  43. Yoo, H.; Sharma, J.; Yeh, H. C.; Martinez, J. S. Solution-phase synthesis of Au fibers using rod-shaped micelles as shape directing agents. Chem. Commun. 2010, 46, 6813–6815.

    CAS  Google Scholar 

  44. Zhang, X.; Gallagher, R.; He, D.; Chen, G. pH regulated synthesis of monodisperse penta-twinned gold nanoparticles with high yield. Chem. Mater. 2020, 32, 5626–5633.

    CAS  Google Scholar 

  45. Khan, Z.; Singh, T.; Hussain, J. I.; Hashmi, A. A. Au(III)-CTAB reduction by ascorbic acid: Preparation and characterization of gold nanoparticles. Colloids Surf. B: Biointerfaces 2013, 104, 11–17.

    CAS  Google Scholar 

  46. Liopo, A.; Wang, S. W.; Derry, P. J.; Oraevsky, A. A.; Zubarev, E. R. Seedless synthesis of gold nanorods using dopamine as a reducing agent. RSC Adv. 2015, 5, 91587–91593.

    CAS  Google Scholar 

  47. Tu, Y. J.; Njus, D.; Schlegel, H. B. A theoretical study of ascorbic acid oxidation and HOO/O2 radical scavenging. Org. Biomol. Chem. 2017, 15, 4417–4431.

    CAS  Google Scholar 

  48. Koeppl, S.; Ghielmetti, N.; Caseri, W.; Spolenak, R. Seed-mediated synthesis of gold nanorods: Control of the aspect ratio by variation of the reducing agent. J. Nanopart. Res. 2013, 15, 1471.

    Google Scholar 

  49. Su, G. X.; Yang, C.; Zhu, J. J. Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine. Langmuir 2015, 31, 817–823.

    CAS  Google Scholar 

  50. Liu, K.; Bu, Y. R.; Zheng, Y. H.; Jiang, X. C.; Yu, A. B.; Wang, H. T. Seedless synthesis of monodispersed gold nanorods with remarkably high yield: Synergistic effect of template modification and growth kinetics regulation. Chem.—Eur. J. 2017, 23, 3291–3299.

    CAS  Google Scholar 

  51. Hong, H. G.; Park, W. Electrochemical characteristics of hydroquinone-terminated self-assembled monolayers on gold. Langmuir 2001, 17, 2485–2492.

    CAS  Google Scholar 

  52. Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250–1261.

    CAS  Google Scholar 

  53. Walsh, M. J.; Tong, W. M.; Katz-Boon, H.; Mulvaney, P.; Etheridge, J.; Funston, A. M. A mechanism for symmetry breaking and shape control in single-crystal gold nanorods. Acc. Chem. Res. 2017, 50, 2925–2935.

    CAS  Google Scholar 

  54. Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.

    CAS  Google Scholar 

  55. Lohse, S. E.; Burrows, N. D.; Scarabelli, L.; Liz-Marzán, L. M.; Murphy, C. J. Anisotropic noble metal nanocrystal growth: The role of halides. Chem. Mater. 2014, 26, 34–43.

    CAS  Google Scholar 

  56. Wang, Z. W.; Larson, R. G. Molecular dynamics simulations of threadlike cetyltrimethylammonium chloride micelles: Effects of sodium chloride and sodium salicylate salts. J. Phys. Chem. B 2009, 113, 13697–13710.

    CAS  Google Scholar 

  57. Yong, K. T.; Sahoo, Y.; Swihart, M. T.; Schneeberger, P. M.; Prasad, P. N. Templated synthesis of gold nanorods (NRs): The effects of cosurfactants and electrolytes on the shape and optical properties. Top. Catal. 2008, 47, 49–60.

    CAS  Google Scholar 

  58. Pekkari, A.; Wen, X.; Orrego-Hernández, J.; da Silva, R. R.; Kondo, S.; Olsson, E.; Härelind, H.; Moth-Poulsen, K. Synthesis of highly monodisperse Pd nanoparticles using a binary surfactant combination and sodium oleate as a reductant. Nanoscale Adv. 2021, 3, 2481–2487.

    CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the financial support from the National Natural Science Foundation of China (Nos. 52222316, 52103325, and 52111530128), the Zhejiang Provincial Natural Science Foundation of China (No. Z22B050001), Ten Thousand People Plan of Zhejiang Province (No. 2019R51012), and China Postdoctoral Science Foundation (No. 2022M713020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Song or Youju Huang.

Electronic Supplementary Material

12274_2022_5214_MOESM1_ESM.pdf

Engineering miniature gold nanorods with tailorable plasmonic wavelength in NIR region via ternary surfactants mediated growth

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Wang, X., Zhang, L. et al. Engineering miniature gold nanorods with tailorable plasmonic wavelength in NIR region via ternary surfactants mediated growth. Nano Res. 16, 5087–5097 (2023). https://doi.org/10.1007/s12274-022-5214-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5214-5

Keywords

Navigation