Skip to main content
Log in

Core/hybrid-shell structures boost thermoelectric performance of flexible inorganic/organic nanowire films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Interface control in inorganic/organic composites has always been regarded as one of the effective means to optimize their thermoelectric (TE) performance, and the past few years have witnessed its development, including carrier-energy filtering and phonon scattering. However, the energy barrier created by the band alignment at the composite interface depends on the Fermi level difference between the organic and inorganic components, which is difficult to be controlled by the common means. Herein, a core/hybrid-shell strategy aiming for efficient interface control is proposed to tune the energy barrier of the inorganic/organic core/shell nanowire interface. The Fermi level of hybrid-shell can be effectively controlled by separating the charge carriers compared to the single-shell composites. The energy barrier of the core/hybrid-shell interface is tuned to an appropriate position, and the energy filtering effect is utilized, resulting in a substantial improvement in power factor and reduction in thermal conductivity for the prepared core/hybrid-shell composites with good air-stability and flexibility. Moreover, both the flexible p type and p-n type TE devices based on the prepared core/hybrid-shell films yield excellent output properties with the maximum power densities of 41 and 45 µW·cm−2 at a temperature difference of ca. 30 K, respectively. This study provides a novel strategy to improve the TE performance of the inorganic/organic composites, displaying great potential for low-power wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao, M. Y.; Wang, P.; Jiang, L. L.; Wang, B. W.; Yao, Y.; Liu, S.; Chu, D. W.; Cheng, W. L.; Lu, Y. R. Power generation for wearable systems. Energy Environ. Sci. 2021, 14, 2114–2157.

    Google Scholar 

  2. Masoumi, S.; O’Shaughnessy, S.; Pakdel, A. Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy 2022, 92, 106774.

    CAS  Google Scholar 

  3. Li, C. C.; Jiang, F. X.; Liu, C. C.; Liu, P. P.; Xu, J. K. Present and future thermoelectric materials toward wearable energy harvesting. Appl. Mater. Today 2019, 15, 543–557.

    Google Scholar 

  4. Wang, Y.; Yang, L.; Shi, X. L.; Shi, X.; Chen, L. D.; Dargusch, M. S.; Zou, J.; Chen, Z. G. Flexible thermoelectric materials and generators: Challenges and innovations. Adv. Mater. 2019, 31, 1807916.

    Google Scholar 

  5. Nandihalli, N.; Liu, C. J.; Mori, T. Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics. Nano Energy 2020, 78, 105186.

    CAS  Google Scholar 

  6. Zhou, M. Y.; Al-Furjan, M. S. H.; Zou, J.; Liu, W. A review on heat and mechanical energy harvesting from human-principles, prototypes and perspectives. Renew. Sust. Energy Rev. 2018, 82, 3582–3609.

    Google Scholar 

  7. Jiang, F. X.; Liu, C. C.; Xu, J. K. Advanced PEDOT Thermoelectric Materials; Woodhead Publishing: Cambridge, MA, 2022.

    Google Scholar 

  8. Li, M.; Bai, Z. Z.; Chen, X.; Liu, C. C.; Xu, J. K.; Lan, X. Q.; Jiang, F. X. Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene). Chin. Phys. B 2022, 31, 027201.

    Google Scholar 

  9. Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053.

    CAS  Google Scholar 

  10. He, J.; Tritt, T. M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997.

    Google Scholar 

  11. Bulman, G.; Barletta, P.; Lewis, J.; Baldasaro, N.; Manno, M.; Bar-Cohen, A.; Yang, B. Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat. Commun. 2016, 7, 10302.

    CAS  Google Scholar 

  12. Wan, C. L.; Tian, R. M.; Kondou, M.; Yang, R. G.; Zong, P. A.; Koumoto, K. Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice. Nat. Commun. 2017, 8, 1024.

    Google Scholar 

  13. Lu, Y.; Qiu, Y.; Cai, K. F.; Ding, Y. F.; Wang, M. D.; Jiang, C.; Yao, Q.; Huang, C. J.; Chen, L. D.; He, J. Q. Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices. Energy Environ. Sci. 2020, 13, 1240–1249.

    CAS  Google Scholar 

  14. Jiang, C.; Wei, P.; Ding, Y. F.; Cai, K. F.; Tong, L.; Gao, Q.; Lu, Y.; Zhao, W. Y.; Chen, S. Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting. Nano Energy 2021, 80, 105488.

    CAS  Google Scholar 

  15. Jo, S.; Choo, S.; Kim, F.; Heo, S. H.; Son, J. S. Ink processing for thermoelectric materials and power-generating devices. Adv. Mater. 2019, 31, 1804930.

    Google Scholar 

  16. He, R.; Schierning, G.; Nielsch, K. Thermoelectric devices: A review of devices, architectures, and contact optimization. Adv. Mater. Technol. 2018, 3, 1700256.

    Google Scholar 

  17. Peng, P.; Zhou, J. Q.; Liang, L. R.; Huang, X.; Lv, H. C.; Liu, Z. X.; Chen, G. M. Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells. Nanomicro Lett. 2022, 14, 81.

    CAS  Google Scholar 

  18. Zhu, T. J.; Liu, Y. T.; Fu, C. G.; Heremans, J. P.; Snyder, J. G.; Zhao, X. B. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884.

    Google Scholar 

  19. Zhang, Z. W.; Ouyang, Y. L.; Cheng, Y.; Chen, J.; Li, N. B.; Zhang, G. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys. Rep. 2020, 860, 1–26.

    CAS  Google Scholar 

  20. Jin, H. L.; Li, J.; Iocozzia, J.; Zeng, X.; Wei, P. C.; Yang, C.; Li, N.; Liu, Z. P.; He, J. H.; Zhu, T. J. et al. Hybrid organic-inorganic thermoelectric materials and devices. Angew. Chem., Int. Ed. 2019, 58, 15206–15226.

    CAS  Google Scholar 

  21. Tan, G. J.; Zhao, L. D.; Kanatzidis, M. G. Rationally designing highperformance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149.

    CAS  Google Scholar 

  22. Bai, W.; Xiao, C.; Xie, Y. Bulk superlattice analogues for energy conversion. J. Am. Chem. Soc. 2022, 144, 3298–3313.

    CAS  Google Scholar 

  23. Schmidt, V.; Wittemann, J. V.; Senz, S.; Gösele, U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 2009, 21, 2681–2702.

    CAS  Google Scholar 

  24. Zuev, Y. M.; Lee, J. S.; Galloy, C.; Park, H.; Kim, P. Diameter dependence of the transport properties of antimony telluride nanowires. Nano Lett. 2010, 10, 3037–3040.

    CAS  Google Scholar 

  25. Martin, P. N.; Aksamija, Z.; Pop, E.; Ravaioli, U. Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. Nano Lett. 2010, 10, 1120–1124.

    CAS  Google Scholar 

  26. Martin, P.; Aksamija, Z.; Pop, E.; Ravaioli, U. Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 2009, 102, 125503.

    Google Scholar 

  27. Wang, L. M.; Zhang, Z. M.; Liu, Y. C.; Wang, B. R.; Fang, L.; Qiu, J. J.; Zhang, K.; Wang, S. R. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase. Nat. Commun. 2018, 9, 3817.

    Google Scholar 

  28. Kumar, P.; Zaia, E. W.; Yildirim, E.; Repaka, D. V. M.; Yang, S. W.; Urban, J. J.; Hippalgaonkar, K. Polymer morphology and interfacial charge transfer dominate over energy-dependent scattering in organic-inorganic thermoelectrics. Nat. Commun. 2018, 9, 5347.

    CAS  Google Scholar 

  29. Guan, X.; Ouyang, J. Y. Enhancement of the Seebeck coefficient of organic thermoelectric materials via energy filtering of charge carriers. CCS Chem. 2021, 3, 2415–2427.

    CAS  Google Scholar 

  30. He, S. Y.; Lehmann, S.; Bahrami, A.; Nielsch, K. Current state-of-the-art in the interface/surface modification of thermoelectric materials. Adv. Energy Mater. 2021, 11, 2101877.

    CAS  Google Scholar 

  31. Gayner, C.; Amouyal, Y. Energy filtering of charge carriers: Current trends, challenges, and prospects for thermoelectric materials. Adv. Funct. Mater. 2019, 30, 1901789.

    Google Scholar 

  32. Mulla, R.; Dunnill, C. W. Core—shell nanostructures for better thermoelectrics. Mater. Adv. 2022, 3, 125–141.

    CAS  Google Scholar 

  33. Meng, Q. F.; Jiang, Q. L.; Cai, K. F.; Chen, L. D. Preparation and thermoelectric properties of PEDOT:PSS coated Te nanorod/PEDOT:PSS composite films. Org. Electron. 2019, 64, 79–85.

    CAS  Google Scholar 

  34. Song, H. J.; Cai, K. F. Preparation and properties of PEDOT: PSS/Te nanorod composite films for flexible thermoelectric power generator. Energy 2017, 125, 519–525.

    CAS  Google Scholar 

  35. Kim, J. W.; Kim, A. Absolute work function measurement by using photoelectron spectroscopy. Curr. Appl. Phys. 2021, 31, 52–59.

    Google Scholar 

  36. Helander, M. G.; Greiner, M. T.; Wang, Z. B.; Lu, Z. H. Pitfalls in measuring work function using photoelectron spectroscopy. Appl. Surf. Sci. 2010, 256, 2602–2605.

    CAS  Google Scholar 

  37. Fang, H. Y.; Wu, Y. Telluride nanowire and nanowire heterostructure-based thermoelectric energy harvesting. J. Mater. Chem. A 2014, 2, 6004–6014.

    CAS  Google Scholar 

  38. Liang, H. W.; Liu, J. W.; Qian, H. S.; Yu, S. H. Multiplex templating process in one-dimensional nanoscale: Controllable synthesis, macroscopic assemblies, and applications. Acc. Chem. Res. 2013, 46, 1450–1461.

    CAS  Google Scholar 

  39. Li, C. C.; Jiang, F. X.; Liu, C. C.; Wang, W. F.; Li, X. J.; Wang, T. Z.; Xu, J. K. A simple thermoelectric device based on inorganic/organic composite thin film for energy harvesting. Chem. Eng. J. 2017, 320, 201–210.

    CAS  Google Scholar 

  40. Sun, P. L.; Li, C. C.; Xu, J. K.; Jiang, Q. L.; Wang, W. F.; Liu, J.; Zhao, F.; Ding, Y. B.; Hou, J.; Jiang, F. X. Effect of Sn element on optimizing thermoelectric performance of Te nanowires. Sustain. Energy Fuels 2018, 2, 2636–2643.

    CAS  Google Scholar 

  41. Choi, J.; Lee, K.; Park, C. R.; Kim, H. Enhanced thermopower in flexible tellurium nanowire films doped using single-walled carbon nanotubes with a rationally designed work function. Carbon 2015, 94, 577–584.

    CAS  Google Scholar 

  42. Cook, J. H.; Al-Attar, H. A.; Monkman, A. P. Effect of PEDOT-PSS resistivity and work function on PLED performance. Org. Electron. 2014, 15, 245–250.

    CAS  Google Scholar 

  43. Jiang, F. X.; Xiong, J. H.; Zhou, W. Q.; Liu, C. C.; Wang, L. Y.; Zhao, F.; Liu, H.; Xu, J. Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT: PSS thin films. J. Mater. Chem. A 2016, 4, 5265–5273.

    CAS  Google Scholar 

  44. Song, H. J.; Cai, K. F.; Shen, S. Enhanced thermoelectric properties of PEDOT/PSS/Te composite films treated with H2SO4. J. Nanopart. Res. 2016, 18, 386.

    Google Scholar 

  45. Li, S. H.; Xin, J. W.; Basit, A.; Long, Q.; Li, S. W.; Jiang, Q. H.; Luo, Y. B.; Yang, J. Y. In situ reaction induced core-shell structure to ultralow κlat and high thermoelectric performance of SnTe. Adv. Sci. 2020, 7, 1903493.

    CAS  Google Scholar 

  46. Bae, E. J.; Kang, Y. H.; Jang, K. S.; Cho, S. Y. Enhancement of thermoelectric properties of PEDOT:PSS and tellurium-PEDOT:PSS hybrid composites by simple chemical treatment. Sci. Rep. 2016, 6, 18805.

    CAS  Google Scholar 

  47. Fang, H. Y.; Yang, H. R.; Wu, Y. Thermoelectric properties of silver telluride-bismuth telluride nanowire heterostructure synthesized by site-selective conversion. Chem. Mater. 2014, 26, 3322–3327.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial support of the National Natural Science Foundation of China (Nos. 51863009, 52073128, 52272214, and 22065013) and the Natural Science Foundation of Jiangxi province (Nos. 20202ACBL204005, 20202ACBL214005, 20212BAB214017, and 20203AEI003). C. C. L. acknowledges the support from the program of Chinese Scholarships Council (CSC No. 201906070063)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingkun Xu, Congcong Liu or Fengxing Jiang.

Electronic supplementary material

12274_2022_5193_MOESM1_ESM.pdf

Electronic Supplementary Material: Core/hybrid-shell structures boost thermoelectric performance of flexible inorganic/organic nanowire films

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Lan, X., Liu, P. et al. Core/hybrid-shell structures boost thermoelectric performance of flexible inorganic/organic nanowire films. Nano Res. 16, 5702–5708 (2023). https://doi.org/10.1007/s12274-022-5193-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5193-6

Keywords

Navigation