Skip to main content
Log in

One droplet reaction for synthesis of multi-sized nanoparticles

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Reaction kinetics of nanoparticles can be controlled by tuning the Peclet number (Pe) as it is an essential parameter in synthesis of multi-sized nanoparticles. Herein, we propose to implement a self-driven multi-dimension microchannels reactor (MMR) for the one droplet synthesis of multi-sized nanoparticles. By carefully controlling the Pe at the gas—liquid interface, the newly formed seed crystals selectively accumulate and grow to a specific size. By the combination of microchannels of different widths and lengths, one droplet reaction in the same apparatus achieves the synchronous synthesis of diverse nanoparticles. MMR enables precise control of nanoparticle diameter at 5 nm precision in the range of 10–110 nm. The use of MMR can be extended to the synthesis of uniform Ag, Au, Pt, and Pd nanoparticles, opening towards the production and engineering of nanostructured materials. This approach gives the chance to regulate the accumulation probability for precise synthesis of nanoparticles with different diameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Garlyyev, B.; Watzele, S.; Fichtner, J.; Michalička, J.; Schökel, A.; Senyshyn, A.; Perego, A.; Pan, D. J.; El-Sayed, H. A.; Macak, J. M. et al. Electrochemical top-down synthesis of C-supported Pt nanoparticles with controllable shape and size: Mechanistic insights and application. Nano Res. 2021, 14, 2762–2769.

    Article  CAS  Google Scholar 

  2. Yu, S.; Kim, D.; Qi, Z. Y.; Louisia, S.; Li, Y. F.; Somorjai, G. A.; Yang, P. D. Nanoparticle assembly induced ligand interactions for enhanced electrocatalytic CO2 conversion. J. Am. Chem. Soc. 2021, 143, 19919–19927.

    Article  CAS  Google Scholar 

  3. Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R. O.; Jiang, Z.; Zhou, W.; Zhang, J. C. et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19450–19459.

    Article  CAS  Google Scholar 

  4. Zhong, Q. X.; Feng, J.; Jiang, B.; Fan, Y. L.; Zhang, Q.; Chen, J. X.; Yin, Y. D. Strain-modulated seeded growth of highly branched black Au superparticles for efficient photothermal conversion. J. Am. Chem. Soc. 2021, 143, 20513–20523.

    Article  CAS  Google Scholar 

  5. Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal—organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

    Article  CAS  Google Scholar 

  6. Liu, Y. N.; Chen, C. S.; Valdez, J.; Motta Meira, D.; He, W. T.; Wang, Y.; Harnagea, C.; Lu, Q. Q.; Guner, T.; Wang, H. et al. Phase-enabled metal-organic framework homojunction for highly selective CO2 photoreduction. Nat. Commun. 2021, 12, 1231.

    Article  CAS  Google Scholar 

  7. Zhang, J. M.; Chen, G. Z.; Guay, D.; Chaker, M.; Ma, D. L. Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale 2014, 6, 2125–2130.

    Article  CAS  Google Scholar 

  8. Yang, M.; Chan, H.; Zhao, G. P.; Bahng, J. H.; Zhang, P. J.; Král, P.; Kotov, N. A. Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. Nat. Chem. 2017, 9, 287–294.

    Article  Google Scholar 

  9. Li, Y. T.; Liu, J. M.; Wang, Z. C.; Jin, J.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Optimizing energy transfer in nanostructures enables in vivo cancer lesion tracking via near-infrared excited hypoxia imaging. Adv. Mater. 2020, 32, 1907718.

    Article  CAS  Google Scholar 

  10. Chen, J. X.; Gong, M. F.; Fan, Y. L.; Feng, J.; Han, L. L.; Xin, H. L.; Cao, M. H.; Zhang, Q.; Zhang, D.; Lei, D. Y. et al. Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy. ACS Nano 2022, 16, 910–920.

    Article  CAS  Google Scholar 

  11. Kim, H. N.; Yang, S. Responsive smart windows from nanoparticle—polymer composites. Adv. Funct. Mater. 2020, 30, 1902597.

    Article  CAS  Google Scholar 

  12. Ding, Y. Z.; Huang, E.; Lam, K. S.; Pan, T. R. Microfluidic impact printer with interchangeable cartridges for versatile non-contact multiplexed micropatterning. Lab Chip 2013, 13, 1902–1910.

    Article  CAS  Google Scholar 

  13. Yao, Y. G.; Huang, Z. N.; Li, T. Y.; Wang, H.; Liu, Y. F.; Stein, H. S.; Mao, Y. M.; Gao, J. L.; Jiao, M. L.; Dong, Q. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl. Acad. Sci. USA 2020, 117, 6316–6322.

    Article  CAS  Google Scholar 

  14. DeMello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature 2006, 442, 394–402.

    Article  CAS  Google Scholar 

  15. Zhu, C.; Zeng, J.; Tao, J.; Johnson, M. C.; Schmidt-Krey, I.; Blubaugh, L.; Zhu, Y. M.; Gu, Z. Z.; Xia, Y. N. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: From hybrid dimers to nonconcentric and concentric bimetallic nanocrystals. J. Am. Chem. Soc. 2012, 134, 15822–15831.

    Article  CAS  Google Scholar 

  16. Zhao, M.; Chen, Z. T.; Shi, Y. F.; Hood, Z. D.; Lyu, Z.; Xie, M. H.; Chi, M. F.; Xia, Y. N. Kinetically controlled synthesis of rhodium nanocrystals with different shapes and a comparison study of their thermal and catalytic properties. J. Am. Chem. Soc. 2021, 143, 6293–6302.

    Article  CAS  Google Scholar 

  17. Wang, Y.; Zheng, Y. Q.; Huang, C. Z.; Xia, Y. N. Synthesis of Ag nanocubes 18–32 nm in edge length: The effects of polyol on reduction kinetics, size control, and reproducibility. J. Am. Chem. Soc. 2013, 135, 1941–1951.

    Article  CAS  Google Scholar 

  18. Loh, N. D.; Sen, S.; Bosman, M.; Tan, S. F.; Zhong, J.; Nijhuis, C. A.; Král, P.; Matsudaira, P.; Mirsaidov, U. Multistep nucleation of nanocrystals in aqueous solution. Nat. Chem. 2017, 9, 77–82.

    Article  CAS  Google Scholar 

  19. Gao, C. B.; Hu, Y. X.; Wang, M. S.; Chi, M. F.; Yin, Y. D. Fully alloyed Ag/Au nanospheres: Combining the plasmonic property of Ag with the stability of Au. J. Am. Chem. Soc. 2014, 136, 7474–7479.

    Article  CAS  Google Scholar 

  20. Luo, G. S.; Du, L.; Wang, Y. J.; Lu, Y. C.; Xu, J. H. Controllable preparation of particles with microfluidics. Particuology 2011, 9, 545–558.

    Article  CAS  Google Scholar 

  21. Dunne, P.; Adachi, T.; Dev, A. A.; Sorrenti, A.; Giacchetti, L.; Bonnin, A.; Bourdon, C.; Mangin, P. H.; Coey, J. M. D.; Doudin, B. et al. Liquid flow and control without solid walls. Nature 2020, 581, 58–62.

    Article  CAS  Google Scholar 

  22. Yang, M.; Yang, L. N.; Zheng, J.; Hondow, N.; Bourne, R. A.; Bailey, T.; Irons, G.; Sutherland, E.; Lavric, D.; Wu, K. J. Mixing performance and continuous production of nanomaterials in an advanced-flow reactor. Chem. Eng. J. 2021, 412, 128565.

    Article  CAS  Google Scholar 

  23. Hall, B. L.; Taylor, C. J.; Labes, R.; Massey, A. F.; Menzel, R.; Bourne, R. A.; Chamberlain, T. W. Autonomous optimisation of a nanoparticle catalysed reduction reaction in continuous flow. Chem. Commun. 2021, 57, 4926–4929.

    Article  CAS  Google Scholar 

  24. Yuan, K.; Song, T. Q.; Yang, C. H.; Guo, J.; Sun, Q. S.; Zou, Y.; Jiao, F.; Li, L. J.; Zhang, X. T.; Dong, H. L. et al. Polymer-assisted space-confined strategy for the foot-scale synthesis of flexible metal-organic framework-based composite films. J. Am. Chem. Soc. 2021, 143, 17526–17534.

    Article  CAS  Google Scholar 

  25. Fan, J.; Li, S. J.; Wu, Z. Q.; Chen, Z. Diffusion and mixing in microfluidic devices. In Microfluidics for Pharmaceutical Applications: From Nano/Micro Systems Fabrication to Controlled Drug Delivery. Santos, H. A.; Liu, D. F.; Zhang, H. B., Eds.; Elsevier: Amsterdam, 2019; pp 79–100.

    Chapter  Google Scholar 

  26. Chen, B. D.; Qin, F. F.; Su, M.; Zhang, Z. Y.; Pan, Q.; Zou, M. M.; Yang, X.; Chen, S. S.; Derome, D.; Carmeliet, J. et al. Self-driven multiplex reaction: Reactant and product diffusion via a transpiration-inspired capillary. ACS Appl. Mater. Interfaces 2021, 13, 22031–22039.

    Article  CAS  Google Scholar 

  27. Elvira, K. S.; Casadevall i Solvas, X.; Wootton, R. C. R.; deMello, A. J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 2013, 5, 905–915.

    Article  CAS  Google Scholar 

  28. Atencia, J.; Beebe, D. J. Controlled microfluidic interfaces. Nature 2005, 437, 648–655.

    Article  CAS  Google Scholar 

  29. Qin, F. F.; Su, M.; Zhao, J. L.; Mazloomi Moqaddam, A.; Carro, L. D.; Brunschwiler, T.; Kang, Q. J.; Song, Y. L.; Derome, D.; Carmeliet, J. Controlled 3D nanoparticle deposition by drying of colloidal suspension in designed thin micro-porous architectures. Int. J. Heat Mass Transfer 2020, 158, 120000.

    Article  CAS  Google Scholar 

  30. Wang, H. S.; Qiao, X. L.; Chen, J. G.; Wang, X. J.; Ding, S. Y. Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 2005, 94, 449–453.

    Article  CAS  Google Scholar 

  31. Lin, L.; Chen, M.; Qin, H. Y.; Peng, X. G. Ag nanocrystals with nearly ideal optical quality: Synthesis, growth mechanism, and characterizations. J. Am. Chem. Soc. 2018, 140, 17734–17742.

    Article  CAS  Google Scholar 

  32. Zhang, Z. L.; Zhang, X. Y.; Xin, Z. Q.; Deng, M. M.; Wen, Y. Q.; Song, Y. L. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 2011, 22, 425601.

    Article  Google Scholar 

  33. Qin, F. F.; Del Carro, L.; Mazloomi Moqaddam, A.; Kang, Q. J.; Brunschwiler, T.; Derome, D.; Carmeliet, J. Study of non-isothermal liquid evaporation in synthetic micro-pore structures with hybrid lattice Boltzmann model. J. Fluid Mech. 2019, 866, 33–60.

    Article  CAS  Google Scholar 

  34. Qin, F. F.; Mazloomi Moqaddam, A.; Kang, Q. J.; Derome, D.; Carmeliet, J. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow. Phys. Fluids 2018, 30, 032104.

    Article  Google Scholar 

  35. Zhang, Q.; Ge, J. P.; Pham, T.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability. Angew. Chem., Int. Ed. 2009, 48, 3516–3519.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Beijing Nova Program from Beijing Municipal Science & Technology Commission (Nos. Z201100006820037 and Z211100002121001), the National Key R&D Program of China (No. 2018YFA0208501), the National Natural Science Foundation of China (Nos. 22075296, 91963212, and 51961145102), the Youth Innovation Promotion Association, the Chinese Academy of Sciences (No. 2020032), and Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202005). F. F. Q. and J. C. acknowledge the Swiss National Super Computing Center (Project No. s1081) for providing the computing support. B. D. C. acknowledges Jiarong Yang for his support in graphing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Su or Yanlin Song.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Qin, F., Su, M. et al. One droplet reaction for synthesis of multi-sized nanoparticles. Nano Res. 16, 5850–5856 (2023). https://doi.org/10.1007/s12274-022-5115-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5115-7

Keywords

Navigation