Skip to main content
Log in

Synergistic piezoelectricity enhanced BaTiO3/polyacrylonitrile elastomer-based highly sensitive pressure sensor for intelligent sensing and posture recognition applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing stretchable and skin-conformal self-powered sensors for intelligent sensing and posture recognition is challenging. Here, based on a multi-force mixing and vulcanization process, as well as synergistically piezoelectricity of BaTiO3 and polyacrylonitrile, an all-in-one, stretchable, and self-powered elastomer-based piezo-pressure sensor (ASPS) with high sensitivity is reported. The ASPS presents excellent sensitivity (0.93 V/104 Pa of voltage and 4.92 nA/104 Pa of current at a pressure of 10–200 kPa) and high durability (over 10,000 cycles). Moreover, the ASPS exhibits a wide measurement range, good linearity, rapid response time, and stable frequency response. All components were fabricated using silicone, affording satisfactory skin-conformality for sensing postures. Through cooperation with a homemade circuit and artificial intelligence algorithm, an information processing strategy was proposed to realize intelligent sensing and recognition. The home-made circuit achieves the acquisition and wireless transmission of ASPS signals (transmission distance up to 50 m), and the algorithm realizes the classification and identification of ASPS signals (accuracy up to 99.5%). This study proposes not only a novel fabrication method for developing self-powered sensors, but also a new information processing strategy for intelligent sensing and recognition, which offers significant application potential in human—machine interaction, physiological analysis, and medical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. L.; Parida, K.; Wang, J. X.; Xiong, J. Q.; Lin, M. F.; Shao, J. Y.; Lee, P. S. A stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring. ACS Appl. Mater. Interfaces 2017, 9, 42200–42209.

    CAS  Google Scholar 

  2. Ma, Y. N.; Liu, N. S.; Li, L. Y.; Hu, X. K.; Zou, Z. G.; Wang, J. B.; Luo, S. J.; Gao, Y. H. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207.

    Google Scholar 

  3. Cao, Y. L.; Guo, Y. B.; Chen, Z. X.; Yang, W. F.; Li, K. R.; He, X. Y.; Li, J. M. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano Energy 2022, 92, 106689.

    CAS  Google Scholar 

  4. Li, C.; Cong, S.; Tian, Z. N.; Song, Y. Z.; Yu, L. H.; Lu, C.; Shao, Y. L.; Li, J.; Zou, G. F.; Rümmeli, M. H. et al. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy 2019, 60, 247–256.

    CAS  Google Scholar 

  5. Hong, G. S.; Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 2019, 20, 330–345.

    CAS  Google Scholar 

  6. Kozai, T. D. Y.; Jaquins-Gerstl, A. S.; Vazquez, A. L.; Michael, A. C.; Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 2015, 6, 48–67.

    CAS  Google Scholar 

  7. Yu, L. H.; Yi, Y. Y.; Yao, T.; Song, Y. Z.; Chen, Y. R.; Li, Q. C.; Xia, Z.; Wei, N.; Tian, Z. N.; Nie, B. Q. et al. All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res. 2019, 12, 331–338.

    CAS  Google Scholar 

  8. Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

    CAS  Google Scholar 

  9. Ren, J.; Zhang, Y.; Bai, W. Y.; Chen, X. L.; Zhang, Z. T.; Fang, X.; Weng, W.; Wang, Y. G.; Peng, H. S. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem., Int. Ed. 2014, 53, 7958.

    Google Scholar 

  10. Yu, H.; Li, N.; Zhao, N. How far are we from achieving self-powered flexible health monitoring systems: An energy perspective. Adv. Energy Mater. 2021, 11, 2002646.

    CAS  Google Scholar 

  11. Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344.

    CAS  Google Scholar 

  12. Vivien, L.; Osmond, J.; Fédéli, J. M.; Marris-Morini, D.; Crozat, P.; Damlencourt, J. F.; Cassan, E.; Lecunff, Y.; Laval, S. 42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. Opt. Express 2009, 17, 6252–6257.

    CAS  Google Scholar 

  13. Shi, J. D.; Fang, Y. Flexible and implantable microelectrodes for chronically stable neural interfaces. Adv. Mater. 2019, 31, 1804895.

    CAS  Google Scholar 

  14. Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2021, 171, 112714.

    CAS  Google Scholar 

  15. Zhou, X. R.; Parida, K.; Halevi, O.; Liu, Y. Z.; Xiong, J. Q.; Magdassi, S.; Lee, P. S. All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy 2020, 72, 104676.

    CAS  Google Scholar 

  16. Zhang, Y. Z.; Wu, M. J.; Zhu, Q. Y.; Wang, F. Y.; Su, H. X.; Li, H.; Diao, C. L.; Zheng, H. W.; Wu, Y. H.; Wang, Z. L. Performance enhancement of flexible piezoelectric nanogenerator via doping and rational 3D structure design for self-powered mechanosensational system. Adv. Funct. Mater. 2019, 29, 1904259.

    CAS  Google Scholar 

  17. Li, Q.; Liu, J.; Yang, B.; Lu, L. J.; Yi, Z. R.; Tian, Y. W.; Liu, J. Q. Highly sensitive surface acoustic wave flexible strain sensor. IEEE Electron Device Lett. 2019, 40, 961–964.

    CAS  Google Scholar 

  18. Li, B. M.; Ju, B.; Zhou, Y.; Knowles, C. G.; Rosenberg, Z.; Flewwellin, T. J.; Kose, F.; Jur, J. S. Airbrushed PVDF-TrFE fibrous sensors for E-textiles. ACS Appl. Electron. Mater. 2021, 3, 5307–5326.

    CAS  Google Scholar 

  19. Park, D. Y.; Joe, D. J.; Kim, D. H.; Park, H.; Han, J. H.; Jeong, C. K.; Park, H.; Park, J. G.; Joung, B.; Lee, K. J. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 2017, 29, 1702308.

    Google Scholar 

  20. Tian, G.; Deng, W. L.; Gao, Y. Y.; Xiong, D.; Yan, C.; He, X. B.; Yang, T.; Jin, L.; Chu, X.; Zhang, H. T. et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019, 59, 574–581.

    CAS  Google Scholar 

  21. Luo, C. X.; Hu, S. H.; Xia, M. J.; Li, P. W.; Hu, J.; Li, G.; Jiang, H. B.; Zhang, W. D. A flexible lead-free BaTiO3/PDMS/C composite nanogenerator as a piezoelectric energy harvester. Energy Technol. 2018, 6, 922–927.

    CAS  Google Scholar 

  22. Kim, G. H.; Hong, S. M.; Seo, Y. Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys. Chem. Chem. Phys. 2009, 11, 10506–10512.

    CAS  Google Scholar 

  23. Lei, T. P.; Yu, L. K.; Zheng, G. F.; Wang, L. Y.; Wu, D. Z.; Sun, D. H. Electrospinning-induced preferred dipole orientation in PVDF fibers. J. Mater. Sci. 2015, 50, 4342–1347.

    CAS  Google Scholar 

  24. Sun, Y.; Liu, Y.; Zheng, Y. D.; Li, Z. J.; Fan, J.; Wang, L.; Liu, X. Q.; Liu, J.; Shou, W. Enhanced energy harvesting ability of ZnO/PAN hybrid piezoelectric nanogenerators. ACS Appl. Mater. Interfaces 2020, 12, 54936–54945.

    CAS  Google Scholar 

  25. Wang, Q. Q.; Du, Y. Z.; Feng, Q.; Huang, F. L.; Lu, K. Y.; Liu, J. Y.; Wei, Q. F. Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibers by electrospinning. J. Appl. Polymer Sci. 2013, 128, 1152–1157.

    CAS  Google Scholar 

  26. Minagawa, M.; Miyano, K.; Takahashi, M.; Yoshii, F. Infrared characteristic absorption bands of highly isotactic poly(acrylonitrile). Macromolecules 1988, 21, 2387–2391.

    CAS  Google Scholar 

  27. Hobson, R. J.; Windle, A. H. Crystalline structure of atactic polyacrylonitrile. Macromolecules 1993, 26, 6903–6907.

    CAS  Google Scholar 

  28. Wang, W. Y.; Zheng, Y. D.; Jin, X.; Sun, Y.; Lu, B. B.; Wang, H. X.; Fang, J.; Shao, H.; Lin, T. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes. Nano Energy 2019, 56, 588–594.

    CAS  Google Scholar 

  29. Rizzo, P.; Auriemma, F.; Guerra, G.; Petraccone, V.; Corradini, P. Conformational disorder in the pseudohexagonal form of atactic polyacrylonitrile. Macromolecules 1996, 29, 8852–8861.

    CAS  Google Scholar 

  30. Minagawa, M.; Taira, T.; Yabuta, Y.; Nozaki, K.; Yoshii, F. An anomalous tacticity-crystallinity relationship: A WAXD study of stereoregular isotactic (83-25) poly(acrylonitrile) powder prepared by urea clathrate polymerization. Macromolecules 2001, 34, 3679–3683.

    CAS  Google Scholar 

  31. Yuan, L. J.; Fan, W.; Yang, X.; Ge, S. B.; Xia, C. L.; Foong, S. Y.; Liew, R. K.; Wang, S. J.; Van Le, Q.; Lam, S. S. Piezoelectric PAN/BaTiO3 nanofiber membranes sensor for structural health monitoring of real-time damage detection in composite. Compos. Commun. 2021, 25, 100680.

    Google Scholar 

  32. Qi, Y.; Kim, J.; Nguyen, T. D.; Lisko, B.; Purohit, P. K.; McAlpine, M. C. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 2011, 11, 1331–1336.

    CAS  Google Scholar 

  33. Palosaari, J.; Leinonen, M.; Hannu, J.; Juuti, J.; Jantunen, H. Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression. J. Electroceram. 2012, 28, 214–219.

    CAS  Google Scholar 

  34. Li, W. B.; Wu, N.; Zhong, J. W.; Zhong, Q. Z.; Zhao, S.; Wang, B.; Cheng, X. F.; Li, S. L.; Liu, K.; Hu, B. et al. Theoretical study of cellular piezoelectret generators. Adv. Funct. Mater. 2016, 26, 1964–1974.

    CAS  Google Scholar 

  35. Yang, T.; Pan, H.; Tian, G.; Zhang, B. B.; Xiong, D.; Gao, Y.; Yan, C.; Chu, X.; Chen, N. J.; Zhong, S. et al. Hierarchically structured PVDF/ZnO core—shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 2020, 72, 104706.

    Google Scholar 

  36. Yang, Y.; Pan, H.; Xie, G. Z.; Jiang, Y. D.; Chen, C. X.; Su, Y. J.; Wang, Y.; Tai, H. L. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens. Actuators A:Phys. 2020, 301, 111789.

    CAS  Google Scholar 

  37. Liu, Q. J.; Jin, L.; Zhang, P.; Zhang, B. B.; Li, Y. X.; Xie, S.; Li, X. H. Nanofibrous grids assembled orthogonally from direct-written piezoelectric fibers as self-powered tactile sensors. ACS Appl. Mater. Interfaces 2021, 13, 10623–10631.

    CAS  Google Scholar 

  38. Jiang, J.; Tu, S. J.; Fu, R. F.; Li, J. J.; Hu, F.; Yan, B.; Gu, Y. C.; Chen, S. Flexible piezoelectric pressure tactile sensor based on electrospun BaTiO3/poly(vinylidene fluoride) nanocomposite membrane. ACS Appl. Mater. Interfaces 2020, 12, 33989–33998.

    CAS  Google Scholar 

  39. Wang, J.; Jiang, J. F.; Zhang, C. C.; Sun, M. Y.; Han, S. W.; Zhang, R. T.; Liang, N.; Sun, D. H.; Liu, H. Energy-efficient, fully flexible, high-performance tactile sensor based on piezotronic effect: Piezoelectric signal amplified with organic field-effect transistors. Nano Energy 2020, 76, 105050.

    CAS  Google Scholar 

  40. Zhu, M. L.; Shi, Q. F.; He, T. Y.; Yi, Z. R.; Ma, Y. M.; Yang, B.; Chen, T.; Lee, C. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019, 13, 1940–1952.

    CAS  Google Scholar 

  41. Fuh, Y. K.; Huang, Z. M.; Wang, B. S.; Li, S. C. Self-powered active sensor with concentric topography of piezoelectric fibers. Nanoscale Res. Lett. 2017, 12, 44.

    Google Scholar 

Download references

Acknowledgements

This wok was supported by the National Natural Science Foundation of China (Nos. 62101513, 51975542, 52175554, and 62171414), China Postdoctoral Science Foundation (Nos. 2022TQ0230 and 2022M712324), Shanxi “1331 Project” Key Subject Construction (No. 1331KSC), the Fundamental Research Program of Shanxi Province (No. 20210302124170), and Young Academic Leaders of North University of China (No. 11045501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junbin Yu or Xiujian Chou.

Electronic supplementary material

12274_2022_5084_MOESM1_ESM.pdf

Synergistic piezoelectricity enhanced BaTiO3/polyacrylonitrile elastomer-based highly sensitive pressure sensor for intelligent sensing and posture recognition applications

Supplementary material, approximately 14.3 MB.

Supplementary material, approximately 36.4 MB.

Supplementary material, approximately 19.5 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Xian, S., Zhang, Z. et al. Synergistic piezoelectricity enhanced BaTiO3/polyacrylonitrile elastomer-based highly sensitive pressure sensor for intelligent sensing and posture recognition applications. Nano Res. 16, 5490–5502 (2023). https://doi.org/10.1007/s12274-022-5084-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5084-x

Keywords

Navigation