Skip to main content
Log in

Pt1/Ni6Co1 layered double hydroxides/N-doped graphene for electrochemical non-enzymatic glucose sensing by synergistic enhancement of single atoms and doping

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of novel single-atom catalysts is important for highly efficient electrochemical catalysis and sensing. In this work, a novel Pt single atoms (SAs) supported on Ni6Co1 layered double hydroxides/nitrogen-doped graphene (Pt1/Ni6Co1LDHs/NG) was constructed for electrochemical enzyme-free catalysis and sensing towards glucose. The loading of Pt single atoms increases with doping of Co atoms that generate more anchoring sites for Pt SAs. The resulting Pt1/Ni6Co1LDHs/NG exhibits low oxidative potential of 0.440 V with high sensitivity of 273.78 µA·mM−1·cm−2 toward glucose, which are 85 mV lower and 15 times higher than those of Ni(OH)2, respectively. Pt1/Ni6Co1LDHs/NG also shows excellent selectivity and great stability during 5-week testing. Theoretical and experimental results show that the boosted performance of Pt1/Ni6Co1LDHs/NG originates from its stronger binding energy with glucose and the synergistic effect of Pt SAs, Co doping, and NG. This work provides a general strategy of designing highly active SACs for extending their application in electrochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, Y. X.; Gong, X.; Yang, J.; Zheng, G. Z.; Zheng, Y.; Li, Y. J.; Xu, Y. S.; Nie, G.; Xie, X.; Chen, M. W. et al. A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring. Biosens. Bioelectron. 2022, 203, 114026.

    Article  CAS  Google Scholar 

  2. Ma, J. W.; Chen, Y. G.; Chen, L.; Wang, L. Y. Ternary Pd-Ni-P nanoparticle-based nonenzymatic glucose sensor with greatly enhanced sensitivity achieved through active-site engineering. Nano Res. 2017, 10, 2712–2720.

    Article  CAS  Google Scholar 

  3. Hwang, D. W.; Lee, S.; Seo, M.; Chung, T. D. Recent advances in electrochemical non-enzymatic glucose sensors-a review. Anal. Chim. Acta 2018, 1033, 1–34.

    Article  CAS  Google Scholar 

  4. Luo, Y. M.; Wang, Q. Y.; Li, J. H.; Xu, F.; Sun, L. X.; Bu, Y. T.; Zou, Y. J.; Kraatz, H. B.; Rosei, F. Tunable hierarchical surfaces of CuO derived from metal-organic frameworks for non-enzymatic glucose sensing. Inorg. Chem. Front. 2020, 7, 1512–1525.

    Article  CAS  Google Scholar 

  5. Zhu, C. Z.; Yang, G. H.; Li, H.; Du, D.; Lin, Y. H. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249.

    Article  CAS  Google Scholar 

  6. Li, X.; Feng, W. D.; Zhang, X. X.; Wang, W.; Chen, S. J.; Zhang, Y. N. Fabrication of humidity sensors based on laser scribed graphene oxide/SnO2 composite layers. Chin. J. Struct. Chem. 2020, 39, 1949–1957.

    CAS  Google Scholar 

  7. Xiao, J. Z.; Fu, Z. H.; Wang, G. E.; Ye, X. L.; Xu, G. Atomically thin 2D TiO2 nanosheets with ligand modified surface for ultrasensitive humidity sensor. Chin. J. Struct. Chem. 2022, 41, 2204054–2204060.

    CAS  Google Scholar 

  8. Yuan, J. H.; Wang, K.; Xia, X. H. Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Funct. Mater. 2005, 15, 803–809.

    Article  CAS  Google Scholar 

  9. Shen, L.; Liang, Z.; Chen, Z. Y.; Wu, C.; Hu, X. F.; Zhang, J. Y.; Jiang, Q.; Wang, Y. B. Reusable electrochemical non-enzymatic glucose sensors based on Au-inlaid nanocages. Nano Res. 2022, 15, 6490–6499.

    Article  CAS  Google Scholar 

  10. Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. T. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009.

    Article  CAS  Google Scholar 

  11. Dong, C. L.; Zhang, X. L.; Xu, J.; Si, R.; Sheng, J.; Luo, J.; Zhang, S. N.; Dong, W. J.; Li, G. B.; Wang, W. C. et al. Ruthenium-doped cobalt-chromium layered double hydroxides for enhancing oxygen evolution through regulating charge transfer. Small 2020, 16, 1905328.

    Article  CAS  Google Scholar 

  12. Zhu, W. X.; Wang, J.; Zhang, W. T.; Hu, N.; Wang, J.; Huang, L. J.; Wang, R.; Suo, Y. R.; Wang, J. L. Monolithic copper selenide submicron particulate film/copper foam anode catalyst for ultrasensitive electrochemical glucose sensing in human blood serum. J. Mater. Chem. B 2018, 6, 718–724.

    Article  CAS  Google Scholar 

  13. Niu, X. H.; Li, X.; Pan, J. M.; He, Y. F.; Qiu, F. X.; Yan, Y. S. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: Opportunities and challenges. RSC Adv. 2016, 6, 84893–84905.

    Article  CAS  Google Scholar 

  14. Kong, L. J.; Ren, Z. Y.; Zheng, N. N.; Du, S. C.; Wu, J.; Tang, J. L.; Fu, H. G. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res. 2015, 8, 469–480.

    Article  CAS  Google Scholar 

  15. Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

    Article  CAS  Google Scholar 

  16. Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.

    Article  Google Scholar 

  17. Peng, B. S.; Liu, H. T.; Liu, Z. Y.; Duan, X. F.; Huang, Y. Toward rational design of single-atom catalysts. J. Phys. Chem. Lett. 2021, 12, 2837–2847.

    Article  CAS  Google Scholar 

  18. Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

    Article  CAS  Google Scholar 

  19. Gao, K.; Wang, B.; Tao, L.; Cunning, B. V.; Zhang, Z. P.; Wang, S. Y.; Ruoff, R. S.; Qu, L. T. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: Mono-doping and Co-doping. Adv. Mater. 2019, 31, 1805121.

    Article  Google Scholar 

  20. Shang, S. S.; Gao, S. Heteroatom-enhanced metal-free catalytic performance of carbocatalysts for organic transformations. Chem Cat Chem. 2019, 11, 3730–3744.

    CAS  Google Scholar 

  21. Wang, Z. L.; Xu, S. M.; Xu, Y. Q.; Tan, L.; Wang, X.; Zhao, Y. F.; Duan, H. H.; Song, Y. F. Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis. Chem. Sci. 2019, 10, 378–384.

    Article  CAS  Google Scholar 

  22. Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

    Article  CAS  Google Scholar 

  23. Lin, Z. Y.; Waller, G.; Liu, Y.; Liu, M. L.; Wong, C. P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884–888.

    Article  CAS  Google Scholar 

  24. Long, B. J.; Zhao, Y. M.; Cao, P. Y.; Wei, W.; Mo, Y.; Liu, J. J.; Sun, C. J.; Guo, X. F.; Shan, C. S.; Zeng, M. H. Single-atom Pt boosting electrochemical nonenzymatic glucose sensing on Ni(OH)2/N-doped graphene. Anal. Chem. 2022, 94, 1919–1924.

    Article  CAS  Google Scholar 

  25. Jiang, D.; Liu, Q.; Wang, K.; Qian, J.; Dong, X. Y.; Yang, Z. T.; Du, X. J.; Qiu, B. J. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens. Bioelectron. 2014, 54, 273–278.

    Article  CAS  Google Scholar 

  26. Dam, D. T.; Lee, J. M. Ultrahigh pseudocapacitance of mesoporous Ni-doped Co(OH)2/ITO nanowires. Nano Energy 2013, 2, 1186–1196.

    Article  Google Scholar 

  27. Wu, Y. T.; Ji, S.; Wang, H.; Pollet, B. G.; Wang, X. Y.; Wang, R. F. A highly efficient water electrolyser cell assembled by asymmetric array electrodes based on Co, Fe-doped Ni(OH)2 nanosheets. Appl. Surf. Sci. 2020, 528, 146972.

    Article  CAS  Google Scholar 

  28. Mansour, A. N. Nickel Mg Kα XPS spectra from the physical electronics model 5400 spectrometer. Surf. Sci. Spectra 1994, 3, 211–220.

    Article  CAS  Google Scholar 

  29. Mansour, A. N. Nickel monochromated Al Kα XPS spectra from the physical electronics model 5400 spectrometer. Surf. Sci. Spectra 1994, 3, 221–230.

    Article  CAS  Google Scholar 

  30. Hu, Y. D.; Luo, G.; Wang, L. G.; Liu, X. K.; Qu, Y. T.; Zhou, Y. S.; Zhou, F. Y.; Li, Z. J.; Li, Y. F.; Yao, T. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 2021, 11, 2002816.

    Article  CAS  Google Scholar 

  31. Zhang, H. B.; Zhou, W.; Dong, J. C.; Lu, X. F.; Lou, X. W. D. Intramolecular electronic coupling in porous iron cobalt (oxy) phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy Environ. Sci. 2019, 12, 3348–3355.

    Article  CAS  Google Scholar 

  32. Li, M. H.; Fang, L.; Zhou, H.; Wu, F.; Lu, Y.; Luo, H. J.; Zhang, Y. X.; Hu, B. S. Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor. Appl. Surf. Sci. 2019, 495, 143554.

    Article  CAS  Google Scholar 

  33. Yang, J.; Cho, M.; Lee, Y. Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosens. Bioelectron. 2016, 75, 15–22.

    Article  CAS  Google Scholar 

  34. Wei, M.; Qiao, Y. X.; Zhao, H. T.; Liang, J.; Li, T. S.; Luo, Y. L.; Lu, S. Y.; Shi, X. F.; Lu, W. B.; Sun, X. P. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569.

    Article  CAS  Google Scholar 

  35. Wang, G. M.; Lu, X. H.; Zhai, T.; Ling, Y. C.; Wang, H. Y.; Tong, Y. X.; Li, Y. Free-standing nickel oxide nanoflake arrays: Synthesis and application for highly sensitive non-enzymatic glucose sensors. Nanoscale 2012, 4, 3123–3127.

    Article  CAS  Google Scholar 

  36. Ponnusamy, R.; Chakraborty, B.; Rout, C. S. Pd-doped WO3 nanostructures as potential glucose sensor with insight from electronic structure simulations. J. Phys. Chem. B 2018, 122, 2737–2746.

    Article  CAS  Google Scholar 

  37. Naik, K. K.; Gangan, A.; Chakraborty, B.; Nayak, S. K.; Rout, C. S. Enhanced nonenzymatic glucose-sensing properties of electrodeposited NiCo2O4-Pd nanosheets: Experimental and DFT investigations. ACS Appl. Mater. Interfaces 2017, 9, 23894–23903.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C. S. S. thanks the support from the National Natural Science Foundation of China (No. 21874031) and “Chu-Tian Scholar” Program of Hubei Province. M. H. Z. acknowledges the support from the NSFC of China (No. 22171075), Guangxi Province (No. 2017GXNSFDA198040), and the BAGUI talent program (no. 2019AC26001). J. J. L. and X. F. G. acknowledge the support by the institutional funds and New Faculty Seed Grant from ORAP at WSU. This research used resources of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory under Contract (No. DE-AC02-06CH11357). Y. M. Z. thanks the support from the China Postdoctoral Science Foundation (No. 2021M701133). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanmeng Zhao, Changsheng Shan or Minghua Zeng.

Electronic Supplementary Material

12274_2022_4801_MOESM1_ESM.pdf

Pt1/Ni6Co1 layered double hydroxides/N-doped graphene for electrochemical non-enzymatic glucose sensing by synergistic enhancement of single atoms and doping

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, B., Cao, P., Zhao, Y. et al. Pt1/Ni6Co1 layered double hydroxides/N-doped graphene for electrochemical non-enzymatic glucose sensing by synergistic enhancement of single atoms and doping. Nano Res. 16, 318–324 (2023). https://doi.org/10.1007/s12274-022-4801-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4801-9

Keywords

Navigation