Skip to main content
Log in

In-situ construction of Li4Ti5O12/rutile TiO2 heterostructured nanorods for robust and high-power lithium storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Li4Ti5O12 is considered as a safe and stable anode material for high-power lithium-ion batteries due to its “zero-strain” characteristic during the charge/discharge. However, the intrinsically low electronic conductivity leads to a deterioration in high-rate performance, impeding its intensive application. Herein, the Li4Ti5O12/rutile TiO2 (LTO/RT) heterostructured nanorods with tunable oxide phases have been in-situ fabricated by annealing the electrospun nanofiber precursor. By constructing such a heterostructured interface, the as-prepared sample delivers a high capacity of 160.3 mAh·g−1 at 1 C after 200 cycles, 125.5 mAh·g−1 at 10 C after 500 cycles and a superior capacity retention of 90.3% after 1,000 cycles at 30 C, outperforming the heterostructure-free counterparts of pure LTO, RT and the commercial LTO product. Density Functional Theory calculation suggests a possible synergistic effect of the LTO/RT interface that would improve the electronic conductivity and Li-ion diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, M.; Chang, X.; Meng, Q. H.; Wan, L. J.; Guo, Y. G. Progress in the sustainable recycling of spent lithium-ion batteries. SusMat 2021, 1, 241–254.

    Article  Google Scholar 

  2. Jo, M. R.; Jung, Y. S.; Kang, Y. M. Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries. Nanoscale 2012, 4, 6870–6875.

    Article  CAS  Google Scholar 

  3. Sha, Y. J.; Xu, X. M.; Li, L.; Cai, R.; Shao, Z. P. Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries. J. Power Sources 2016, 314, 18–27.

    Article  CAS  Google Scholar 

  4. An, Q.; Sun, X. H.; Na, Y.; Cai, S. M.; Zheng, C. M. Graphene-supported cobalt nanoparticles used to activate SiO2-based anode for lithium-ion batteries. Chin. Chem. Lett., in press, DOI: https://doi.org/10.1016/j.cclet.2022.03.028.

  5. Zhang, W. F.; Wang, L.; Ding, G. C.; Yang, Y. J.; Yang, G.; Xu, J.; Xu, N. N.; Xie, L. L.; Han, Q.; Zhu, L. M. et al. Bimetallic CoNiSe2/C nanosphere anodes derived from Ni-Co-metal-organic framework precursor towards higher lithium storage capacity. Chin. Chem. Lett., in press,DOI: https://doi.org/10.1016/j.cclet.2022.03.051.

  6. Liu, C.; Xia, H. Y.; Wei, Y. P.; Ma, J. B.; Gan, L.; Kang, F. Y.; He, Y. B. Grain boundaries contribute to highly efficient lithium-ion transport in advanced LiNi0.8Co0.15Al0.05 O2 secondary sphere with compact structure. SusMat 2021, 1, 255–265.

    Article  Google Scholar 

  7. Mao, E. Y.; Wang, W. Y.; Wan, M. T.; Wang, L.; He, X. M.; Sun, Y. M. Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Res. 2020, 13, 1122–1126.

    Article  CAS  Google Scholar 

  8. Ge, H.; Chen, L.; Yuan, W.; Zhang, Y.; Fan, Q. Z.; Osgood, H.; Matera, D.; Song, X. M.; Wu, G. Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries. J. Power Sources 2015, 297, 436–441.

    Article  CAS  Google Scholar 

  9. He, Y. S.; Muhetaer, A.; Li, J. M.; Wang, F. F.; Liu, C.; Li, Q.; Xu, D. S. Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres for high-rate and long-cycle life Li-ion batteries. Adv. Energy Mater. 2017, 7, 1700950.

    Article  Google Scholar 

  10. Gong, S. H.; Lee, J. H.; Chun, D. W.; Bae, J. H.; Kim, S. C.; Yu, S.; Nahm, S.; Kim, H. S. Effects of cr doping on structural and electrochemical properties of Li4Ti5O12 nanostructure for sodium-ion battery anode. J. Energy Chem. 2021, 59, 465–472.

    Article  CAS  Google Scholar 

  11. Liu, J.; Wei, A. X.; Pan, G. X.; Shen, S. H.; Xiao, Z. M.; Zhao, Y.; Xia, X. H. Self-supported hierarchical porous Li4Ti5O12/carbon arrays for boosted lithium ion storage. J. Energy Chem. 2021, 54, 754–760.

    Article  CAS  Google Scholar 

  12. Wang, G. C.; Wang, H. M.; Ma, G. Q.; Du, X. H.; Du, L. Y.; Jing, P.; Wang, Y. Q.; Wu, K. P.; Wu, H.; Wang, Q. et al. Investigation on process mechanism of a novel energy-saving synthesis for high performance Li4Ti5O12 anode material. J. Energy Chem. 2022, 70, 266–275.

    Article  CAS  Google Scholar 

  13. Cheng, X. B.; Liu, H.; Yuan, H.; Peng, H. J.; Tang, C.; Huang, J. Q.; Zhang, Q. A perspective on sustainable energy materials for lithium batteries. SusMat 2021, 1, 38–50.

    Article  Google Scholar 

  14. Xu, N. S.; Sun, X. Z.; Zhang, X.; Wang, K.; Ma, Y. W. A two-step method for preparing Li4Ti5O12-graphene as an anode material for lithium-ion hybrid capacitors. RSC Adv. 2015, 5, 94361–94368.

    Article  CAS  Google Scholar 

  15. Xu, N. S.; Sun, X. Z.; Zhao, F. F.; Jin, X. F.; Zhang, X.; Wang, K.; Huang, K.; Ma, Y. W. The role of pre-lithiation in activated carbon/Li4Ti5O12 asymmetric capacitors. Electrochim. Acta 2017, 236, 443–450.

    Article  CAS  Google Scholar 

  16. Chang, X. Q.; Sun, N.; Zhou, H. Y.; Soomro, R. A.; Xu, B. Soft carbon-coated bulk graphite for improved potassium ion storage. Chin. Chem. Lett., in press,DOI: https://doi.org/10.1016/j.cclet.2022.03.035.

  17. Wang, W.; Guo, Y. Y.; Liu, L. X.; Wang, S. X.; Yang, X. J.; Guo, H. Gold coating for a high performance Li4Ti5O12 nanorod aggregates anode in lithium-ion batteries. J. Power Sources 2014, 245, 624–629.

    Article  CAS  Google Scholar 

  18. Liu, Y.; Liu, J. Y.; Hou, M. Y.; Fan, L.; Wang, Y. G.; Xia, Y. Y. Carbon-coated Li4Ti5O12 nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. J. Mater. Chem. A 2017, 5, 10902–10908.

    Article  CAS  Google Scholar 

  19. Jiang, Y. Q.; Guo, F.; Liu, Y. J.; Xu, Z.; Gao, C. Three-dimensional printing of graphene-based materials for energy storage and conversion. SusMat 2021, 1, 304–323.

    Article  Google Scholar 

  20. Wu, H.; Hou, C. Y.; Shen, G. Z.; Liu, T.; Shao, Y. L.; Xiao, R.; Wang, H. Z. MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithium-ion batteries. Nano Res. 2018, 11, 5866–5878.

    Article  CAS  Google Scholar 

  21. Wang, H. Y.; Wang, L. C.; Lin, J.; Yang, J. B.; Wu, F.; Li, L.; Chen, R. J. Structural and electrochemical characteristics of hierarchical Li4Ti5O12 as high-rate anode material for lithium-ion batteries. Electrochim. Acta 2021, 368, 137470.

    Article  CAS  Google Scholar 

  22. Zhu, K. X.; Gao, H. Y.; Hu, G. X.; Liu, M. J.; Wang, H. C. Scalable synthesis of hierarchical hollow Li4Ti5O12 microspheres assembled by zigzag-like nanosheets for high rate lithium-ion batteries. J. Power Sources 2017, 340, 263–272.

    Article  CAS  Google Scholar 

  23. Tian, M.; Chen, X.; Sun, S. T.; Yang, D.; Wu, P. Y. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery. Nano Res. 2019, 12, 1121–1127.

    Article  CAS  Google Scholar 

  24. Sun, J.; Guo, N. K.; Song, T. S.; Hao, Y. R.; Sun, J. W.; Xue, H.; Wang, Q. Revealing the interfacial electron modulation effect of CoFe alloys with CoCx encapsulated in N-doped cnts for superior oxygen reduction. Adv. Powder Mater. 2022, 1, 100023.

    Article  Google Scholar 

  25. Chen, G.; Yan, L. T.; Luo, H. M.; Guo, S. J. Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv. Mater. 2016, 28, 7580–7602.

    Article  CAS  Google Scholar 

  26. Huang, Y. X.; Wang, Z. H.; Jiang, Y.; Li, S. J.; Wang, M.; Ye, Y. S.; Wu, F.; Xie, M.; Li, L.; Chen, R. J. Conductivity and pseudocapacitance optimization of bimetallic antimony-indium sulfide anodes for sodium-ion batteries with favorable kinetics. Adv. Sci. 2018, 5, 1800613.

    Article  Google Scholar 

  27. Zhao, N.; Qin, J.; Chu, L. J.; Wang, L. Z.; Xu, D.; Wang, X. J.; Yang, H. J.; Zhang, J. J.; Li, X. F. Heterogeneous interface of Se@Sb@C boosting potassium storage. Nano Energy 2020, 78, 105345.

    Article  CAS  Google Scholar 

  28. Liu, J. W.; Xiao, S. H.; Li, X. Y.; Li, Z. Z.; Li, X. R.; Zhang, W. S.; Xiang, Y.; Niu, X. B.; Chen, J. S. Interface engineering of Fe3Se4/FeSe heterostructure encapsulated in electrospun carbon nanofibers for fast and robust sodium storage. Chem. Eng. J. 2021, 417, 129279.

    Article  CAS  Google Scholar 

  29. Wu, X. Y.; Li, S. M.; Xu, Y. Y.; Wang, B.; Liu, J. H.; Yu, M. Hierarchical heterostructures of NiO nanosheet arrays grown on pine twig-like α-NiS@Ni3S2 frameworks as free-standing integrated anode for high-performance lithium-ion batteries. Chem. Eng. J. 2019, 356, 245–254.

    Article  CAS  Google Scholar 

  30. Xiao, S. H.; Li, X. Y.; Zhang, W. S.; Xiang, Y.; Li, T. S.; Niu, X. B.; Chen, J. S.; Yan, Q. Y. Bilateral interfaces in In2Se3-CoIn2-CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano 2021, 15, 13307–13318.

    Article  CAS  Google Scholar 

  31. Zhang, C. Z.; Han, F.; Wang, F.; Liu, Q. D.; Zhou, D. W.; Zhang, F. Q.; Xu, S. H.; Fan, C. L.; Li, X. K.; Liu, J. S. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020, 24, 208–219.

    Article  Google Scholar 

  32. Guo, C.; Zhang, W. C.; Liu, Y.; He, J. P.; Yang, S.; Liu, M. K.; Wang, Q. H.; Guo, Z. P. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high — performance sodium ✉ ion batteries. Adv. Funct. Mater. 2019, 29, 1901925.

    Article  Google Scholar 

  33. Hu, X. S.; Li, Y.; Wei, X. X.; Wang, L.; She, H. D.; Huang, J. W.; Wang, Q. Z. Preparation of double-layered Co-Ci/NiFeOOH co-catalyst for highly meliorated pec performance in water splitting. Adv. Powder Mater. 2022, 1, 100024.

    Article  Google Scholar 

  34. Li, Z. J.; Wu, X. D.; Jiang, X.; Shen, B. B.; Teng, Z. S.; Sun, D. M.; Fu, G. T.; Tang, Y. W. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv. Powder Mater. 2022, 1, 100020.

    Article  Google Scholar 

  35. Cao, L.; Gao, X. W.; Zhang, B.; Ou, X.; Zhang, J. F.; Luo, W. B. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 2020, 14, 3610–3620.

    Article  CAS  Google Scholar 

  36. Jiang, M.; Fu, C. P.; Cheng, R. Q.; Liu, T. Y.; Guo, M. L.; Meng, P. Y.; Zhang, J.; Sun, B. D. Interface engineering of Co3Fe7-Fe3C heterostructure as an efficient oxygen reduction reaction electrocatalyst for aluminum-air batteries. Chem. Eng. J. 2021, 404, 127124.

    Article  CAS  Google Scholar 

  37. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  38. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  39. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  40. Wu, F. X.; Li, X. H.; Wang, Z. X.; Guo, H. J. Petal-like Li4Ti5O12-TiO2 nanosheets as high-performance anode materials for Li-ion batteries. Nanoscale 2013, 5, 6936–6943.

    Article  CAS  Google Scholar 

  41. Wang, D. D.; Liu, H. X.; Shan, Z. Q.; Xia, D. W.; Na, R.; Liu, H. D.; Wang, B. H.; Tian, J. H. Nitrogen, sulfur co-doped porous graphene boosting Li4Ti5O12 anode performance for high-rate and long-life lithium ion batteries. Energy Storage Mater. 2020, 27, 387–395.

    Article  Google Scholar 

  42. Wang, Q.; Geng, J.; Yuan, C.; Kuai, L.; Geng, B. Y. Mesoporous spherical Li4Ti5O12/TiO2 composites as an excellent anode material for lithium-ion batteries. Electrochim. Acta 2016, 212, 41–46.

    Article  CAS  Google Scholar 

  43. Wang, R.; Cao, X. Y.; Zhao, D. X.; Zhu, L. M.; Xie, L. L.; Li, J. J.; Miao, Y. X. Enhancing lithium storage performances of the Li4Ti5O12 anode by introducing the CuV2O6 phase. ACS Appl. Mater. Interfaces 2020, 12, 39170–39180.

    Article  CAS  Google Scholar 

  44. Zhang, L.; Zhang, X. H.; Tian, G. Y.; Zhang, Q. H.; Knapp, M.; Ehrenberg, H.; Chen, G.; Shen, Z. X.; Yang, G. C.; Gu, L. et al. Lithium lanthanum titanate perovskite as an anode for lithium ion batteries. Nat. Commun. 2020, 11, 3490.

    Article  CAS  Google Scholar 

  45. He, D. F.; Yang, Y.; Liu, Z. M.; Shao, J.; Wu, J.; Wang, S.; Shen, L. M.; Bao, N. Z. Solvothermal-assisted assembly of MoS2 nanocages on graphene sheets to enhance the electrochemical performance of lithium-ion battery. Nano Res. 2020, 13, 1029–1034.

    Article  CAS  Google Scholar 

  46. Luo, S. N.; Zhang, P. C.; Yuan, T.; Ruan, J. F.; Peng, C. X.; Pang, Y. P.; Sun, H.; Yang, J. H.; Zheng, S. Y. Molecular self-assembly of a nanorod n-Li4Ti5O12/TiO2/C anode for superior lithium ion storage. J. Mater. Chem. A 2018, 6, 15755–15761.

    Article  CAS  Google Scholar 

  47. Zhu, J. F.; Chen, J.; Xu, H.; Sun, S. Q.; Xu, Y.; Zhou, M.; Gao, X.; Sun, Z. M. Plasma-introduced oxygen defects confined in Li4Ti5O12 nanosheets for boosting lithium-ion diffusion. ACS Appl. Mater. Interfaces 2019, 11, 17384–17392.

    Article  CAS  Google Scholar 

  48. Ma, J. M.; Wei, Y. P.; Gan, L.; Wang, C.; Xia, H. Y.; Lv, W.; Li, J.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Abundant grain boundaries activate highly efficient lithium ion transportation in high rate Li4Ti5O12 compact microspheres. J. Mater. Chem. A 2019, 7, 1168–1176.

    Article  CAS  Google Scholar 

  49. Lu, Y. F.; Zhang, H. J.; Liu, H. D.; Nie, Z. T.; Xu, F.; Zhao, Y.; Zhu, J. X.; Huang, W. Electrolyte dynamics engineering for flexible fiber-shaped aqueous zinc-ion battery with ultralong stability. Nano Lett. 2021, 21, 9651–9660.

    Article  CAS  Google Scholar 

  50. Ge, H.; Cui, L. X.; Sun, Z. J.; Wang, D. H.; Nie, S. N.; Zhu, S.; Matthews, B.; Wu, G.; Song, X. M.; Ma, T. Y. Unique Li4Ti5O12/TiO2 multilayer arrays with advanced surface lithium storage capability. J. Mater. Chem. A 2018, 6, 22053–22061.

    Article  CAS  Google Scholar 

  51. McNulty, D.; Carroll, E.; O’Dwyer, C. Rutile TiO2 inverse opal anodes for Li-ion batteries with long cycle life, high-rate capability, and high structural stability. Adv. Energy Mater. 2017, 7, 1602291.

    Article  Google Scholar 

  52. Wu, L. B.; Leng, X. N.; Liu, Y.; Wei, S. F.; Li, C. L.; Wang, G. Y.; Lian, J. S.; Jiang, Q.; Nie, A. N.; Zhang, T. Y. A strategy for synthesis of nanosheets consisting of alternating spinel Li4Ti5O12 and rutile TiO2 lamellas for high-rate anodes of lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 4649–4657.

    Article  CAS  Google Scholar 

  53. Ling, L. M.; Bai, Y.; Wang, H. L.; Ni, Q.; Zhang, J. T.; Wu, F.; Wu, C. Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries. Nano Res. 2018, 11, 1563–1574.

    Article  CAS  Google Scholar 

  54. Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.

    Article  CAS  Google Scholar 

  55. Zhang, H. J.; Lu, Y. F.; Han, W. Q.; Zhu, J. X.; Zhang, Y.; Huang, W. Solar energy conversion and utilization: Towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chem. Eng. J. 2020, 393, 124766.

    Article  CAS  Google Scholar 

  56. Chen, C. J.; Xu, H. H.; Zhou, T. F.; Guo, Z. P.; Chen, L. N.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Cheng, S. J.; Huang, Y. H. et al. Integrated intercalation-based and interfacial sodium storage in graphene-wrapped porous Li4Ti5O12 nanofibers composite aerogel. Adv. Energy Mater. 2016, 6, 1600322.

    Article  Google Scholar 

  57. Wang, S. T.; Yang, Y.; Quan, W.; Hong, Y.; Zhang, Z. T.; Tang, Z. L.; Li, J. Ti3+-free three-phase Li4Ti5O12/TiO2 for high-rate lithium ion batteries: Capacity and conductivity enhancement by phase boundaries. Nano Energy 2017, 32, 294–301.

    Article  CAS  Google Scholar 

  58. Li, X. R.; Wei, J. L.; Li, Q.; Zheng, S. S.; Xu, Y. X.; Du, P.; Chen, C. Y.; Zhao, J. Y.; Xue, H. G.; Xu, Q. et al. Nitrogen-doped cobalt oxide nanostructures derived from cobalt-alanine complexes for high-performance oxygen evolution reactions. Adv. Funct. Mater. 2018, 28, 1800886.

    Article  Google Scholar 

  59. Zhang, Y. X.; Luo, Y.; Chen, Y.; Lu, T. L.; Yan, L. Q.; Cui, X. L.; Xie, J. Y. Enhanced rate capability and low-temperature performance of Li4Ti5O12 anode material by facile surface fluorination. ACS Appl. Mater. Interfaces 2017, 9, 17145–17154.

    Article  CAS  Google Scholar 

  60. Xu, F.; Zhou, Y. P.; Zhai, X. W.; Zhang, H. J.; Liu, H. D.; Ang, E. H.; Lu, Y. F.; Nie, Z. T.; Zhou, M.; Zhu, J. X. Ultrafast universal fabrication of metal-organic complex nanosheets by Joule heating engineering. Small Methods 2022, 6, 2101212.

    Article  CAS  Google Scholar 

  61. Sheng, Q. Q.; Li, Q.; Xiang, L. X.; Huang, T.; Mai, Y. Y.; Han, L. Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery. Nano Res. 2021, 14, 992–997.

    Article  CAS  Google Scholar 

  62. Ding, Y.; Zhang, Q.; Rui, K.; Xu, F.; Lin, H. J.; Yan, Y.; Li, H.; Zhu, J. X.; Huang, W. Ultrafast microwave activating polarized electron for scalable porous al toward high-energy-density batteries. Nano Lett. 2020, 20, 8818–8824.

    Article  CAS  Google Scholar 

  63. Kim, M. C.; Moon, S. H.; Han, S. B.; Kwak, D. H.; Lee, J. E.; Kim, E. S.; Choi, S.; Shin, Y. K.; Park, K. W. Sea urchin-like Li4Ti5O12 nanostructure as a Li-ion battery anode with high energy density and improved ionic transport. J. Alloys Compd. 2018, 767, 73–80.

    Article  CAS  Google Scholar 

  64. Yan, B.; Li, M. S.; Li, X. F.; Bai, Z. M.; Yang, J. W.; Xiong, D. B.; Li, D. J. Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li4Ti5O12 anode. J. Mater. Chem. A 2015, 3, 11773–11781.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2021YFB2401900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxia Jiang or Jun Song Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xiao, S., Jiang, J. et al. In-situ construction of Li4Ti5O12/rutile TiO2 heterostructured nanorods for robust and high-power lithium storage. Nano Res. 16, 1513–1521 (2023). https://doi.org/10.1007/s12274-022-4706-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4706-7

Keywords

Navigation