Skip to main content
Log in

Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the increasing advance of fifth generation (5G) network and the gradual expansion of digital devices, harsh working environment for electronic devices has spawned higher requirements for microwave absorbing materials (MAMs). Since both the electromagnetic response and energy conversion character vary with temperature, to achieve temperature insensitive microwave absorption behaviour in wide temperature range has become extremely challenging. In this work, structured metacomposites containing sub-wavelength reduced graphene oxide (RGO)@carbon spheres were fabricated, and the microwave absorption was further improved through structural and composition design of the RGO@carbon units. Due to the unique anti-reflection effect on microwave of the metacomposites, the temperature-insensitive electromagnetic performance at elevated temperature could be exhibited. Moreover, both the dielectric relaxation behaviour and microwave absorption proformance of the system could be further increased. As a result, the effective absorption bandwidth (reflection loss (RL) < −10 dB) of the metacomposites with only 3.0 wt.% filler content could cover the entire X-band (8.2–12.4 GHz) frequency ranging from 298 to 473K. The metacomposite proposed in this work provides a “de-correlating” strategy to break the linkage between microwave absorption behaviour and temperature, which offers an interesting plateau for fabricating efficient high-temperature microwave absorption structures with tunable and designable advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436.

    Article  CAS  Google Scholar 

  2. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    Article  CAS  Google Scholar 

  3. Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105670.

    Article  CAS  Google Scholar 

  4. Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

    Article  CAS  Google Scholar 

  5. Guan, H. T.; Wang, Q. Y.; Wu, X. F.; Pang, J.; Jiang, Z. Y.; Chen, G.; Dong, C. J.; Wang, L. H.; Gong, C. H. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B Eng. 2021, 207, 108562.

    Article  CAS  Google Scholar 

  6. Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796.

    Article  CAS  Google Scholar 

  7. Li, M.; Yin, X. W.; Zheng, G. P.; Chen, M.; Tao, M. J.; Cheng, L. F.; Zhang, L. T. High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics. J. Mater. Sci. 2015, 50, 1478–1487.

    Article  CAS  Google Scholar 

  8. Liu, Y.; Luo, F.; Su, J. B.; Zhou, W. C.; Zhu, D. M. Dielectric and microwave absorption properties of Ti3SiC2/cordierite composite ceramics oxidized at high temperature. J. Alloys Compd. 2015, 632, 623–628.

    Article  CAS  Google Scholar 

  9. Zhang, Y. H.; Meng, H. J.; Shi, Y. P.; Zhang, X. F.; Liu, C. X.; Wang, Y.; Gong, C. H.; Zhang, J. W. TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption. Compos. Part B Eng. 2020, 193, 108028.

    Article  CAS  Google Scholar 

  10. Shi, Y. P.; Li, D.; Si, H. X.; Duan, Y. P.; Gong, C. H.; Zhang, J. W. TiN/Fe2Ni2N/SiO2 composites for magnetic-dielectric balance to facilitate temperature-stable broadband microwave absorption. J. Alloys Compd. 2022, 918, 165603.

    Article  CAS  Google Scholar 

  11. Wei, Y.; Shi, Y. P.; Zhang, X. F.; Li, D.; Zhang, L.; Gong, C. H.; Zhang, J. W. Preparation of black titanium monoxide nanoparticles and their potential in electromagnetic wave absorption. Adv. Powder Technol. 2020, 31, 3458–3464.

    Article  CAS  Google Scholar 

  12. Du, H.; Zhang, Q. P.; Zhao, B.; Marken, F.; Gao, Q. C.; Lu, H. X.; Guan, L.; Wang, H. L.; Shao, G.; Xu, H. L. et al. Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties. J. Adv. Ceram. 2021, 10, 1042–1051.

    Article  CAS  Google Scholar 

  13. Zhao, J.; Zhang, J. L.; Wang, L.; Li, J. K.; Feng, T.; Fan, J. C.; Chen, L. X.; Gu, J. W. Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 2020, 22, 100486.

    Article  Google Scholar 

  14. Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

    Article  CAS  Google Scholar 

  15. Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk—shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

    Article  CAS  Google Scholar 

  16. Song, W. L.; Zhang, K. L.; Chen, M. J.; Hou, Z. L.; Chen, H. S.; Yuan, X. J.; Ma, Y. B.; Fang, D. N. A universal permittivity-attenuation evaluation diagram for accelerating design of dielectric-based microwave absorption materials: A case of graphene-based composites. Carbon 2017, 118, 86–97.

    Article  CAS  Google Scholar 

  17. Zhang, M. M.; Jiang, Z. Y.; Lv, X. Y.; Zhang, X. F.; Zhang, Y. H.; Zhang, J. W.; Zhang, L.; Gong, C. H. Microwave absorption performance of reduced graphene oxide with negative imaginary permeability. J. Phys. D Appl. Phys. 2020, 53, 02LT01.

    Article  CAS  Google Scholar 

  18. Shi, Y. Y.; Yu, L. J.; Li, K.; Li, S. Z.; Dong, Y. B.; Zhu, Y. F.; Fu, Y. Q.; Meng, F. B. Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption. Compos. Sci. Technol. 2020, 197, 108246.

    Article  CAS  Google Scholar 

  19. Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.

    Article  CAS  Google Scholar 

  20. Cao, M. S.; Wang, X. X.; Zhang, M.; Cao, W. Q.; Fang, X. Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.

    Article  CAS  Google Scholar 

  21. Xu, H. L.; Yin, X. W.; Li, M. H.; Ye, F.; Han, M. K.; Hou, Z. X.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 2018, 132, 343–351.

    Article  CAS  Google Scholar 

  22. Song, W. L.; Cao, M. S.; Hou, Z. L.; Yuan, J.; Fang, X. Y. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr. Mater. 2009, 61, 201–204.

    Article  CAS  Google Scholar 

  23. Kong, L.; Yin, X. W.; Han, M. K.; Zhang, L. T.; Cheng, L. F. Carbon nanotubes modified with ZnO nanoparticles: High-efficiency electromagnetic wave absorption at high-temperatures. Ceram. Int. 2015, 41, 4906–4915.

    Article  CAS  Google Scholar 

  24. Hou, Z. X.; Yin, X. W.; Xu, H. L.; Wei, H. J.; Li, M. H.; Cheng, L. F.; Zhang, L. T. Reduced graphene oxide/silicon nitride composite for cooperative electromagnetic absorption in wide temperature spectrum with excellent thermal stability. ACS Appl. Mater. Interfaces 2019, 11, 5364–5372.

    Article  CAS  Google Scholar 

  25. Shi, Y. P.; Li, D.; Si, H. X.; Jiang, Z. Y.; Li, M. Y.; Gong, C. H. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2022, 130, 249–255.

    Article  Google Scholar 

  26. Li, Y. K.; Li, W.; Wang, Y.; Cao, J.; Guan, J. G. Refractory metamaterial microwave absorber with strong absorption insensitive to temperature. Adv. Opt. Mater. 2018, 6, 1800691.

    Article  Google Scholar 

  27. Zhang, D. J.; Liu, X. F.; Li, C. H.; Zhang, M.; Zhang, Y. H.; Zhang, X. F. Structuring micro/nanoscale hybrid Fe@SiC flakes for tunable microwave absorption properties. Mater. Res. Bull. 2019, 118, 110487.

    Article  CAS  Google Scholar 

  28. Zhang, D. J.; Ma, Y. R.; Jiang, L.; Zhang, X. F.; Yan, M. Milimeter-scale metacomposite absorbers by structuring Ni@C nanocapsules for tunable microwave absorption. J. Alloys Compd. 2019, 784, 1205–1211.

    Article  CAS  Google Scholar 

  29. Jiang, Q.; Qiao, Y.; Xiang, C. J.; Uddin, A.; Wu, L. W.; Qin, F. X. Metacomposite based on three-dimensional ferromagnetic microwire architecture for electromagnetic response. Adv. Compos. Hybrid. Mater., in press, https://doi.org/10.1007/s42114-021-00394-y.

  30. Huang, L. X.; Duan, Y. P.; Dai, X. H.; Zeng, Y. S.; Ma, G. J.; Liu, Y.; Gao, S. H.; Zhang, W. P. Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 2019, 15, 1902730.

    Article  Google Scholar 

  31. Zhang, M. M.; Fang, X. K.; Zhang, Y. H.; Guo, J. H.; Gong, C. H.; Estevez, D.; Qin, F. X.; Zhang, J. W. Ultralight reduced graphene oxide aerogels prepared by cation-assisted strategy for excellent electromagnetic wave absorption. Nanotechnology 2020, 31, 275707.

    Article  CAS  Google Scholar 

  32. Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

    Article  CAS  Google Scholar 

  33. Zhou, M. F.; Xu, X. F.; Wan, G. P.; Mou, P. P.; Teng, S. J.; Wang, G. Z. Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers. Nano Res., in press, https://doi.org/10.1007/s12274-022-4521-1.

  34. Jiao, C. L.; Xiong, J. Q.; Tao, J.; Xu, S. J.; Zhang, D. S.; Lin, H.; Chen, Y. Y. Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study. Int. J. Biol. Macromol. 2016, 83, 133–141.

    Article  CAS  Google Scholar 

  35. Xuan, C. J.; Wu, Z. X.; Lei, W.; Wang, J.; Guo, J. P.; Wang, D. L. Nitrogen-doped hierarchical porous carbons derived from sodium alginate as efficient oxygen reduction reaction electrocatalysts. ChemCatChem 2017, 9, 809–815.

    Article  CAS  Google Scholar 

  36. Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J. Colloid Interface Sci. 2016, 484, 196–204.

    Article  Google Scholar 

  37. Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

    Article  CAS  Google Scholar 

  38. Treml, H.; Woelki, S.; Kohler, H. H. Theory of capillary formation in alginate gels. Chem. Phys. 2003, 293, 341–353.

    Article  CAS  Google Scholar 

  39. Jiang, Z. Y.; Si, H. X.; Chen, X.; Liu, H. M.; Zhang, L.; Zhang, Y. H.; Gong, C. H.; Zhang, J. W. Simultaneous enhancement of impedance matching and the absorption behavior of BN/RGO nanocomposites for efficiency microwave absorption. Compos. Commun. 2020, 22, 100503.

    Article  Google Scholar 

  40. Wang, X. X.; Zhang, M.; Shu, J. C.; Wen, B.; Cao, W. Q.; Cao, M. S. Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon 2021, 184, 136–145.

    Article  CAS  Google Scholar 

  41. Li, T. T.; Zhong, Y. Q.; Yan, M. X.; Zhou, W.; Xu, W. T.; Huang, S. Y.; Sun, F.; Lou, C. W.; Lin, J. H. Synergistic effect and characterization of graphene/carbon nanotubes/polyvinyl alcohol/sodium alginate nanofibrous membranes formed using continuous needleless dynamic linear electrospinning. Nanomaterials (Basel) 2019, 9, 714.

    Article  Google Scholar 

  42. Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

    Article  CAS  Google Scholar 

  43. Quan, L.; Qin, F. X.; Lu, H. T.; Estevez, D.; Wang, Y. F.; Li, Y. H.; Tian, Y.; Wang, H.; Peng, H. X. Sequencing dual dopants for an electromagnetic tunable graphene. Chem. Eng. J. 2021, 413, 127421.

    Article  CAS  Google Scholar 

  44. Liu, J. L.; Zhang, L. M.; Wu, H. J. Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2200544.

    Article  CAS  Google Scholar 

  45. Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

    Article  CAS  Google Scholar 

  46. Li, X.; Zhang, M.; You, W. B.; Pei, K.; Zeng, Q. W.; Han, Q.; Li, Y. S.; Cao, H.; Liu, X. H.; Che, R. C. Magnetized mxene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interfaces 2020, 12, 18138–18147.

    Article  CAS  Google Scholar 

  47. Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.

    Article  CAS  Google Scholar 

  48. Cao, W. Q.; Wang, X. X.; Yuan, J.; Wang, W. Z.; Cao, M. S. Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 2015, 3, 10017–10022.

    Article  CAS  Google Scholar 

  49. Wang, H. Y.; Zhu, D. M.; Zhou, W. C.; Luo, F. High temperature electromagnetic and microwave absorbing properties of polyimide/multi-walled carbon nanotubes nancomposites. Chem. Phys. Lett. 2015, 633, 223–228.

    Article  CAS  Google Scholar 

  50. Zhou, W.; Yin, R. M.; Long, L.; Luo, H.; Hu, W. D.; Ding, Y. H.; Li, Y. Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range. Ceram. Int. 2018, 44, 12301–12307.

    Article  CAS  Google Scholar 

  51. Ma, J. R.; Shu, J. C.; Cao, W. Q.; Zhang, M.; Wang, X. X.; Yuan, J.; Cao, M. S. A green fabrication and variable temperature electromagnetic properties for thermal stable microwave absorption towards flower-like Co3O4@rGO/SiO2 composites. Compos. Part B:Eng. 2019, 166, 187–195.

    Article  CAS  Google Scholar 

  52. Shi, Y. P.; Li, D.; Wei, Y.; Gong, C. H.; Zhang, J. W. Magnetic TiN composites for efficient microwave absorption: Nanoribbons vs nanoparticles. Compos. Commun. 2021, 28, 100919.

    Article  Google Scholar 

  53. Mu, Z. G.; Wei, G. K.; Zhang, H.; Gao, L.; Zhao, Y.; Tang, S. L.; Ji, G. B. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res., in press, https://doi.org/10.1007/s12274-022-4500-6.

  54. Wang, H. G.; Meng, F. B.; Huang, F.; Jing, C. F.; Li, Y.; Wei, W.; Zhou, Z. W. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable highperformance microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 12142–12153.

    Article  CAS  Google Scholar 

  55. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

    Article  Google Scholar 

  56. Zhang, M.; Xu, P.; Peng, H. X.; Qin, F. X. A rational design of core-shell-satellite structured BaTiO3 fillers for epoxy-based composites with enhanced microwave dielectric constant and low loss. Compos. Part B Eng. 2021, 215, 108764.

    Article  CAS  Google Scholar 

  57. Zhao, B.; Li, Y.; Zeng, Q. W.; Fan, B. B.; Wang, L.; Zhang, R.; Che, R. C. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption. J. Mater. Sci. Technol. 2022, 107, 100–110.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the financial support of the National Natural Science Foundation of China (Nos. U1704253 and 21671057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhong Gong.

Electronic Supplementary Material

12274_2022_4674_MOESM1_ESM.pdf

Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Si, H., Li, Y. et al. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 15, 8546–8554 (2022). https://doi.org/10.1007/s12274-022-4674-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4674-y

Keywords

Navigation