Skip to main content
Log in

Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Interface engineering has gradually attracted substantial research interest in constructing active bifunctional catalysts toward urea electrolysis. The fundamental understanding of the crystallinity transition of the components on both sides of the interface is extremely significant for realizing controllable construction of catalysts through interface engineering, but it still remains a challenge. Herein, the Ni/NiO heterogenous nanoparticles are successfully fabricated on the porous N-doped carbon spheres by a facile hydrothermal and subsequent pyrolysis strategy. And for the first time we show the experimental observation that the Ni/NiO interface can be fine-tuned via simply tailoring the heating rate during pyrolysis process, in which the crystalline/amorphous or crystalline/crystalline Ni/NiO heterostructure is deliberately constructed on the porous N-doped carbon spheres (named as CA−Ni/NiO@NCS or CC−Ni/NiO@NCS, respectively). By taking advantage of the unique porous architecture and the synergistic effect between crystalline Ni and amorphous NiO, the well-designed CA−Ni/NiO@NCS displays more remarkable urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) activity than its crystalline/crystalline counterpart of CC−Ni/NiO@NCS. Particularly, the whole assembled two-electrode electrolytic cell using the elaborate CA−Ni/NiO@NCS both as the anode and cathode can realize the current density of 10 mA·cm−2 at a super low voltage of 1.475 V (264 mV less than that of pure water electrolysis), as well as remarkable prolonged stability over 63 h. Besides, the H2 evolution driven by an AA battery and a commercial solar cell is also studied to enlighten practical applications for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian, G. F.; Chen, J. L.; Yu, T. Q.; Liu, J. C.; Luo, L.; Yin, S. B. Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 2022, 14, 20.

    Article  CAS  Google Scholar 

  2. Xu, X. J.; Du, P. Y.; Chen, Z. K.; Huang, M. H. An electrodeposited cobalt-selenide-based film as an efficient bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 2016, 4, 10933–10939.

    Article  CAS  Google Scholar 

  3. Zhang, H.; Xi, B. J.; Gu. Y.; Chen, W. H.; Xiong, S. L. Interface engineering and heterometal doping Mo−NiS/Ni(OH)2 for overall water splitting. Nano Res. 2021, 14, 3466–3473.

    Article  CAS  Google Scholar 

  4. Hou, X. B.; Han, Z. K.; Xu, X. J.; Sarker, D.; Zhou, J.; Wu, M.; Liu, Z. C.; Huang, M. H.; Jiang, H. Q. Controllable amorphization engineering on bimetallic metal-organic frameworks for ultrafast oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129330.

    Article  CAS  Google Scholar 

  5. Xu, X. J.; Du, P. Y.; Guo, T.; Zhao, B. L.; Wang, H. L.; Huang, M. H. In situ grown Ni phosphate@Ni12P5 nanorod arrays as a unique core-shell architecture: Competitive bifunctional electrocatalysts for urea electrolysis at large current densities. ACS Sustainable Chem. Eng. 2020, 8, 7463–7471.

    Article  CAS  Google Scholar 

  6. Sun, M. X.; Wang, Y.; Sun, C. S.; Qi. Y.; Cheng, J.; Song, Y. M.; Zhang, L. X. Nitrogen-doped Co3O4 nanowires enable high-efficiency electrochemical oxidation of 5-hydroxymethylfurfural. Chin. Chem. Lett. 2022, 33, 385–389.

    Article  CAS  Google Scholar 

  7. Du, P. Y.; Zhang, J. J.; Liu, Y. H.; Huang, M. H. Hydrogen generation from catalytic glucose oxidation by Fe-based electrocatalysts. Electrochem. Commun. 2017, 83, 11–15.

    Article  CAS  Google Scholar 

  8. Yin, Y. J.; Tan, Y.; Wei, Q. Y.; Zhang, S. C.; Wu, S. Q.; Huang, Q.; Hu, F. L.; Mi. Y. Nanovilli electrode boosts hydrogen evolution: A surface with superaerophobicity and superhydrophilicity. Nano Res. 2021, 14, 961–968.

    Article  CAS  Google Scholar 

  9. Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. 2017, 129, 860–864.

    Article  Google Scholar 

  10. Liu, Z.; Zhang, C. Z.; Liu, H.; Feng, L. G. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl. Catal. B: Environ. 2020, 276, 119165.

    Article  CAS  Google Scholar 

  11. Xu, X. J.; Guo, T.; Xia, J. Y.; Zhao, B. L.; Su, G.; Wang, H. L.; Huang, M. H.; Toghan, A. Modulation of the crystalline/amorphous interface engineering on Ni-P-O-based catalysts for boosting urea electrolysis at large current densities. Chem. Eng. J. 2021, 425, 130514.

    Article  CAS  Google Scholar 

  12. Zhu, X. Q.; Zhang, X. Y.; Huang, B. L.; Li, J.; Wang, E. K. An interfacial electron transfer relay center for accelerating the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 18304–18310.

    Article  CAS  Google Scholar 

  13. Luo, M. C.; Qin, Y. N.; Li, M. G.; Sun, Y. J.; Li, C. J.; Li, Y. J.; Yang, Y.; Lv, F.; Wu, D.; Zhou, P. et al. Interface modulation of twinned PtFe nanoplates branched 3D architecture for oxygen reduction catalysis. Sci. Bull. 2020, 65, 97–104.

    Article  CAS  Google Scholar 

  14. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  15. Ma X.; Zhang X. Y.; Yang M.; Xie J. Y.; Lv R. Q.; Chai Y. M.; Dong B. High-pressure microwave-assisted synthesis of WSx/Ni9S8/NF hetero-catalyst for efficient oxygen evolution reaction. Rare Met. 2021, 40, 1048–1055.

    Article  CAS  Google Scholar 

  16. Lou, Z. R.; Li, Y. G.; Zhu, L. P.; Xie, W. Y.; Niu, W. Z.; Song, H.; Ye, Z. Z.; Zhang, S. B. The crystalline/amorphous contact in Cu2O/Ta2O5 heterostructures: Increasing its sunlight-driven overall water splitting efficiency. J. Mater. Chem. A 2017, 5, 2732–2738.

    Article  CAS  Google Scholar 

  17. Kang, Y. Q.; Jiang, B.; Malgras, V.; Guo, Y. N.; Cretu, O.; Kimoto, K.; Ashok, A.; Wan, Z.; Li, H. X.; Sugahara, Y. et al. Heterostructuring mesoporous 2D iridium nanosheets with amorphous nickel boron oxide layers to improve electrolytic water splitting. Small Methods 2021, 5, 2100679.

    Article  CAS  Google Scholar 

  18. Shi, P. D.; Zhang, Y.; Zhang, G. L.; Zhu, X. J.; Wang, S. H.; Wang, A. L. A crystalline/amorphous CoP@CoB hierarchical core-shell nanorod array for enhanced hydrogen evolution. J. Mater. Chem. A 2021, 9, 19719–19724.

    Article  CAS  Google Scholar 

  19. Chen, X. H.; Li, Q.; Che, Q. J.; Chen, Y. S.; Xu, X. Interface engineering of crystalline/amorphous Co2P/CoMoPx nanostructure as efficient electrocatalysts for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 2437–2445.

    Article  CAS  Google Scholar 

  20. Yue, Q.; Zhang, Y.; Jiang, Y. J.; Li, J. L.; Zhang, H. W.; Yu, C. Z.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y. H.; Zhao, D. Y. Nanoengineering of core-shell Magnetic mesoporous microspheres with tunable surface roughness. J. Am. Chem. Soc. 2017, 139, 4954–4961.

    Article  CAS  Google Scholar 

  21. Wang, Y. C.; Liu, Y. Y.; Zhang, M.; Liu, B. Y.; Zhao, Z. Y.; Yan, K. One-step architecture of bifunctional petal-like oxygen-deficient NiAl-LDHs nanosheets for high-performance hybrid supercapacitors and urea oxidation. Sci. China Mater., in press, https://doi.org/10.1007/s40843-021-1978-3.

  22. Wang, X. K.; Gai, H. Y.; Chen, Z. K.; Liu, Y. H.; Zhang, J. J.; Zhao, B. L.; Toghan, A.; Huang, M. H. The marriage of crystalline/amorphous Co/Co3O4 heterostructures with N-doped hollow carbon spheres: Efficient and durable catalysts for oxygen reduction. Mater. Today. Energy 2020, 18, 100497.

    Article  CAS  Google Scholar 

  23. Guo, T.; Xu, X. J.; Wang, X. K.; Zhou, J.; Wang, H. L.; Shi, Z. C.; Huang, M. H. Enabling the full exposure of Fe2P@NixP heterostructures in tree-branch-like nanoarrays for promoted urea electrolysis at high current densities. Chem. Eng. J. 2021, 417, 128067.

    Article  CAS  Google Scholar 

  24. Gu, X. C.; Liu, Z.; Li, M.; Tian, J. Q.; Feng, L. G. Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction. Appl. Catal. B: Environ. 2021, 297, 120462.

    Article  CAS  Google Scholar 

  25. Wang, Z. C.; Zhang, L. X. Nickel ditelluride nanosheet arrays: A highly efficient electrocatalyst for the oxygen evolution reaction. ChemElectroChem 2018, 5, 1153–1158.

    Article  CAS  Google Scholar 

  26. Ding, W. L.; Cao, Y. H.; Liu, H.; Wang, A. X.; Zhang, C. J.; Zheng, X. R. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2021, 40, 1373–1382.

    Article  CAS  Google Scholar 

  27. Lei, C. J.; Wang, Y.; Hou, Y.; Liu, P.; Yang, J.; Zhang, T.; Zhuang, X. D.; Chen, M. W.; Yang, B.; Lei, L. C. et al. Efficient alkaline hydrogen evolution on atomically dispersed Ni−N species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 2019, 12, 149–156.

    Article  CAS  Google Scholar 

  28. Yue, Z. H.; Zhu, W. X.; Li, Y. Z.; Wei, Z. Y.; Hu, N.; Suo, Y. R.; Wang, J. L. Surface engineering of a nickel oxide-nickel hybrid nanoarray as a versatile catalyst for both superior water and urea oxidation. Inorg. Chem. 2018, 57, 4693–4698.

    Article  CAS  Google Scholar 

  29. Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605–1612.

    Article  CAS  Google Scholar 

  30. Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

    Article  CAS  Google Scholar 

  31. Xia, Wei.; Zou, R. Q.; An, L.; Xia, D. G.; Guo, S. J. A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568–576.

    Article  CAS  Google Scholar 

  32. Wang, X. K.; Chen, Z. K.; Han, Z. K.; Gai, H. Y.; Zhou, J.; Wang, Y. R.; Cui, P. X.; Ge, J. J.; Xing, W.; Zheng, X. S. et al. Manipulation of new married edge-adjacent Fe2N5 catalysts and identification of active species for oxygen reduction in wide pH range. Adv. Funct. Mater. 2022, 32, 2111835.

    Article  CAS  Google Scholar 

  33. Chen, Z.; Zhang, M.; Wang, Y. C.; Yang, Z. Y.; Hu, D.; Tang, Y. T.; Yan, K. Controllable synthesis of nitrogen-doped porous carbon from metal-polluted miscanthus waste boosting for supercapacitors. Green Energy Environ. 2021, 6, 929–937.

    Article  CAS  Google Scholar 

  34. Liu, Y. H.; Wang, X. K.; Zhao, B. L.; Shao, X.; Huang, M. H. Fe/Fe3C nanoparticles encapsulated in N-doped hollow carbon spheres as efficient electrocatalysts for the oxygen reduction reaction over a wide pH range. Chem. Eur. J. 2019, 25, 9650–9657.

    Article  CAS  Google Scholar 

  35. Xu, H. B.; Fei, B.; Cai, G. H.; Ha, Y.; Liu, J.; Jia, H. X.; Zhang, J. C.; Liu, M. Wu, R. B. Boronization-induced ultrathin 2D nanosheets with abundant crystalline-amorphous phase boundary supported on nickel foam toward efficient water splitting. Adv. Energy Mater. 2020, 10, 1902714.

    Article  CAS  Google Scholar 

  36. Chen, J. L.; Qian, G. F.; Zhang, H.; Feng, S. Q.; Mo, Y. S.; Luo, L.; Yin, S. B. PtCo@PtSn heterojunction with high stability/activity for pH-universal H2 evolution. Adv. Funct. Mater. 2022, 32, 2107597.

    Article  CAS  Google Scholar 

  37. Wang F. L.; Xiao Z. X.; Liu X.; Ren J. W.; Xing T.; Li Z.; Li X. Y.; Chen Y. L. Strategic design of cellulose nanofibers@zeolitic imidazolate frameworks derived mesoporous carbon-supported nanoscale CoFe2O4/CoFe hybrid composition as trifunctional electrocatalyst for Zn-air battery and self-powered overall watersplitting. J. Power Sources 2022, 521, 230925.

    Article  CAS  Google Scholar 

  38. Raja, D. S.; Chuah, X. F.; Lu, S. Y. In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 2018, 8, 1801065.

    Article  Google Scholar 

  39. Xu, Y. X.; Li, B.; Zheng, S. S.; Wu, P.; Zhan, J. Y.; Xue, H. G.; Xu. Q.; Pang, H. Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution. J. Mater. Chem. A 2018, 6, 22070–22076.

    Article  CAS  Google Scholar 

  40. Zeng, L. Y.; Sun, K. A.; Wang, X. B.; Liu, Y. Q.; Pan, Y.; Liu, Z.; Cao, D. W.; Song, Y.; Liu, S. H.; Liu, C. G. Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 2018, 51, 26–36.

    Article  CAS  Google Scholar 

  41. Liu, D. N.; Liu, T. T.; Zhang, L. X.; Qu, F. L.; Du, G.; Asiri, A. M.; Sun, X. P. High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J. Mater. Chem. A 2017, 5, 3208–3213.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21775142), the Natural Science Foundation of Shandong Province (No. ZR2020ZD10), and the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia (project number 510).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arafat Toghan or Minghua Huang.

Electronic Supplementary Material

12274_2022_4505_MOESM1_ESM.pdf

Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Hou, X., Du, P. et al. Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis. Nano Res. 15, 7124–7133 (2022). https://doi.org/10.1007/s12274-022-4505-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4505-1

Keywords

Navigation