Skip to main content
Log in

Transforming bulk alkenes and alkynes into fine chemicals enabled by single-atom site catalysis

  • Mini Review
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The addition and substitution reactions across a variety of alkenes and alkynes have been playing an important role in organic synthesis. In particular, catalyses enabled by homogeneous complexes as well as heterogenous nanomaterials have been much received attentions over decades. Along with these blooming progresses in these fields, single-atom site catalysts (SACs) exhibit outstanding performances in terms of reactivity and selectivity, thus providing a new powerful strategy to upgrade these bulk chemicals. Herein, we summarize the reactions of alkenes and alkynes enabled by SACs, in which catalytic hydrogenation, hydrosilylation, hydroboration, hydroformylation, and cross coupling have been included. Moreover, preparations and fine structures of the corresponding SACs have been described, therefore providing a better understanding and overview to address the origin of catalytic activity in the reported examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  2. Wang, Y.; Zheng X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  3. Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d Orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

    CAS  Google Scholar 

  4. Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

    CAS  Google Scholar 

  5. Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

    CAS  Google Scholar 

  6. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  7. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    Article  CAS  Google Scholar 

  8. Hou, Z. Q.; Dai, L. Y.; Deng, J. G.; Zhao, G. F.; Jing, L.; Wang, Y. S.; Yu, X. H.; Gao, R. Y.; Tian, X. R.; Dai, H. X. et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO Catalyst. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202201655.

  9. Chen, Y. Z.; Sun, H. L.; Gates, B. C. Prototype atomically dispersed supported metal catalysts: Iridium and platinum. Small 2021, 17, 2004665.

    Article  CAS  Google Scholar 

  10. Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

    Article  CAS  Google Scholar 

  11. Zhang, R. X.; Chen, Y.; Ding, M. H.; Zhao, J. Heterogeneous Cu catalyst in organic transformations. Nano Res. 2022, 15, 2810–2833.

    Article  Google Scholar 

  12. Han, A. L.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, e2004500.

    Article  Google Scholar 

  13. Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.

    Article  Google Scholar 

  14. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  15. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

    Article  CAS  Google Scholar 

  16. Wei, H. H.; Li, X. Y.; Deng, B. H.; Lang, J. L.; Huang, Y.; Hua, X. Y.; Qiao, Y. D.; Ge, B. H.; Ge, J.; Wu, H. Rapid synthesis of Pd single-atom/cluster as highly active catalysts for Suzuki coupling reactions. Chin. J. Catal. 2022, 43, 1058–1065.

    Article  CAS  Google Scholar 

  17. Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D.; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O—H bond insertion. Nat. Catal. 2021, 4, 523–531.

    Article  CAS  Google Scholar 

  18. Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.

    Article  CAS  Google Scholar 

  19. Rivera-Cárcamo, C.; Gerber, I. C.; del Rosal, I.; Guicheret, B.; Contreras, R. C.; Vanoye, L.; Favre-Réguillon, A.; Machado, B. F.; Audevard, J.; de Bellefon, C. et al. Control of the single atom/nanoparticle ratio in Pd/C catalysts to optimize the cooperative hydrogenation of alkenes. Catal. Sci. Technol. 2021, 11, 984–999.

    Article  Google Scholar 

  20. Cui, X. J.; Junge, K.; Dai, X. C.; Kreyenschulte, C.; Pohl, M. M.; Wohlrab, S.; Shi, F.; Brückner, A.; Beller, M. Synthesis of single atom based heterogeneous platinum catalysts: High selectivity and activity for hydrosilylation reactions. ACS Cent. Sci. 2017, 3, 580–585.

    Article  CAS  Google Scholar 

  21. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-Markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410.

    Article  CAS  Google Scholar 

  22. Zhu, Y. Q.; Cao, T.; Cao, C. B.; Luo, J.; Chen, W. X.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Han, Y. H.; Li, Z. et al. One-pot pyrolysis to N-doped graphene with high-density Pt single atomic sites as heterogeneous catalyst for alkene hydrosilylation. ACS Catal. 2018, 8, 10004–10011.

    Article  CAS  Google Scholar 

  23. Chen, L. X.; Sterbinsky, G. E.; Tait, S. L. Synthesis of platinum single-site centers through metal-ligand self-assembly on powdered metal oxide supports. J. Catal. 2018, 365, 303–312.

    Article  CAS  Google Scholar 

  24. Chen, L. X.; Ali, I. S.; Sterbinsky, G. E.; Gamler, J. T. L.; Skrabalak, S. E.; Tait, S. L. Alkene hydrosilylation on oxide-supported Pt-ligand single-site catalysts. ChemCatChem 2019, 11, 2843–2854.

    Article  CAS  Google Scholar 

  25. Liu, K. R.; Badamdorj, B.; Yang, F.; Janik, M. J.; Antonietti, M. Accelerated anti-Markovnikov alkene hydrosilylation with humic-acid-supported electron-deficient platinum single atoms. Angew. Chem., Int. Ed. 2021, 60, 24220–24226.

    Article  CAS  Google Scholar 

  26. Yu, Z. H.; Song, Z. J.; Lu, C. S.; Bai, Y.; Li, J. Y.; Liu, J.; Liu, P.; Peng, J. J. The synthesis of heterogenous Co-MOFs and application in the catalytic hydrosilylation of alkenes. Appl. Organomet. Chem., in press, https://doi.org/10.1002/aoc.6648.

  27. Xu, Q.; Guo, C. X.; Tian, S. B.; Zhang, J.; Chen, W. X.; Cheong, W. C.; Gu, L.; Zheng, L. R.; Xiao, J. P.; Liu, Q. et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972–981.

    Article  CAS  Google Scholar 

  28. Lang, R.; Li, T. B.; Matsumura, D.; Miao, S.; Ren, Y. J.; Cui, Y. T.; Tan, Y.; Qiao, B. T.; Li, L.; Wang, A. Q. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem., Int. Ed. 2016, 55, 16054–16058.

    Article  CAS  Google Scholar 

  29. Amsler, J.; Sarma, B. B.; Agostini, G.; Prieto, G.; Plessow, P. N.; Studt, F. Prospects of heterogeneous hydroformylation with supported single atom catalysts. J. Am. Chem. Soc. 2020, 142, 5087–5096.

    Article  CAS  Google Scholar 

  30. Li, T. B.; Chen, F.; Lang, R.; Wang, H.; Su, Y.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Styrene hydroformylation with in situ hydrogen: Regioselectivity control by coupling with the low-temperature water-gas shift reaction. Angew. Chem., Int. Ed. 2020, 59, 7430–7434.

    Article  CAS  Google Scholar 

  31. Zhao, K.; Wang, H. L.; Wang, X. Z.; Li, T.; Dai, X. C.; Zhang, L. P.; Cui, X. J.; Shi, F. Confinement of atomically dispersed Rh catalysts within porous monophosphine polymers for regioselective hydroformylation of alkenes. J. Catal. 2021, 401, 321–330.

    Article  CAS  Google Scholar 

  32. Gao, P.; Liang, G. F.; Ru, T.; Liu, X. Y.; Qi, H. F.; Wang, A. Q.; Chen, F. E. Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nat. Commun. 2021, 12, 4698.

    Article  CAS  Google Scholar 

  33. Hikazudani, S.; Mochida, T.; Yano, K.; Nagaoka, K.; Ishihara, T.; Takita, Y. Mono-atomically dispersed Pd on TiO2 as a catalyst for epoxidation of light olefins at low temperatures in the presence of H2 and O2. Catal. Commun. 2011, 12, 1396–1400.

    Article  CAS  Google Scholar 

  34. Chen, X.; Zou, Y.; Zhang, M. K.; Gou, W. Y.; Zhang, S.; Qu, Y. Q. Multiscale porous single-atom Co catalysts for epoxidation with O2. J. Mater. Chem. A 2022, 10, 6016–6022.

    Article  CAS  Google Scholar 

  35. Li, W. H.; Li, C. Y.; Xiong, H. Y.; Liu, Y.; Huang, W. Y.; Ji, G. J.; Jiang, Z.; Tang, H. T.; Pan, Y. M.; Ding, Y. J. Constructing mononuclear palladium catalysts by precoordination/solvothermal polymerization: Recyclable catalyst for regioselective oxidative heck reactions. Angew. Chem., Int. Ed. 2019, 58, 2448–2453.

    Article  CAS  Google Scholar 

  36. Wen, J. W.; Yang, X. T.; Sun, Z. Z.; Yang, J. J.; Han, P.; Liu, Q. X.; Dong, H. Y.; Gu, M.; Huang, L. M.; Wang, H. Biomimetic photocatalytic sulfonation of alkenes to access β-ketosulfones with single-atom iron site. Green Chem. 2020, 22, 230–237.

    Article  CAS  Google Scholar 

  37. Guo, T. L.; Tang, N. F.; Lin, F.; Shang, Q. H.; Chen, S.; Qi, H. F.; Pan, X. L.; Wu, C. T.; Xu, G. L.; Zhang, J. et al. High-loading singleatom copper catalyst supported on coordinatively unsaturated Al2O3 for selective synthesis of homoallylboronates. ChemSusChem 2020, 13, 3115–3121.

    Article  CAS  Google Scholar 

  38. Quan, Y. L.; Yu, R. H.; Zhu, J. X.; Guan, A. X.; Lv, X. M.; Yang, C.; Li, S.; Wu, J. S.; Zheng, G. F. Efficient carboxylation of styrene and carbon dioxide by single-atomic copper electrocatalyst. J. Colloid Interface Sci. 2021, 601, 378–384.

    Article  CAS  Google Scholar 

  39. Xu, Q.; Guo, C. X.; Li, B. B.; Zhang, Z. D.; Qiu, Y. J.; Tian, S. B.; Zheng, L. R.; Gu, L.; Yan, W. S.; Wang, D. S. et al. Al3+ dopants induced Mg2+ vacancies stabilizing single-atom Cu catalyst for efficient free-radical hydrophosphinylation of alkenes. J. Am. Chem. Soc. 2022, 144, 4321–4326.

    Article  CAS  Google Scholar 

  40. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

    Article  CAS  Google Scholar 

  41. Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X. L.; Yang, X. F.; Wang, X. D.; Tai, Z. J. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015, 5, 3717–3725.

    Article  CAS  Google Scholar 

  42. Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 3, 1491–1500.

    Article  Google Scholar 

  43. Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.

    Article  Google Scholar 

  44. Feng, Q. C.; Zhao, S.; Xu, Q.; Chen, W. X.; Tian, S. B.; Wang, Y.; Yan, W. S.; Luo, J.; Wang, D. S.; Li, Y. D. Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene. Adv. Mater. 2019, 31, 1901024.

    Article  Google Scholar 

  45. Guo, Y. L.; Qi, H. F.; Su, Y.; Jiang, Q. K.; Cui, Y. T.; Li, L.; Qiao, B. T. High performance of single-atom catalyst Pd1/MgO for semi-hydrogenation of acetylene to ethylene in excess ethylene. ChemNanoMat 2021, 7, 526–529.

    Article  CAS  Google Scholar 

  46. He, X. H.; He, Q.; Deng, Y. C.; Peng, M.; Chen, H. Y.; Zhang, Y.; Yao, S. Y.; Zhang, M. T.; Xiao, D. Q.; Ma, D. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663.

    Article  Google Scholar 

  47. Liu, Y.; Guo, W.; Li, X. J.; Jiang, P.; Zhang, N.; Liang, M. H. Copper single-atom-covered Pt nanoparticles for selective hydrogenation of phenylacetylene. ACS Appl. Nano Mater. 2021, 4, 5292–5300.

    Article  CAS  Google Scholar 

  48. Zhang, X. G.; Lin, H.; Zhang, J.; Qiu, Y. J.; Zhang, Z. D.; Xu, Q.; Meng, G.; Yan, W. S.; Gu, L.; Zheng, L. R. et al. Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes. Chem. Sci. 2021, 12, 14599–14605.

    Article  CAS  Google Scholar 

  49. Zhao, L. M.; Qin, X. T.; Zhang, X. R.; Cai, X. B.; Huang, F.; Jia, Z. M.; Diao, J. Y.; Xiao, D. Q.; Jiang, Z.; Lu, R. F. et al. A magnetically separable Pd single-atom catalyst for efficient selective hydrogenation of phenylacetylene. Adv. Mater., in press, https://doi.org/10.1002/adma.202110455.

  50. Ren, S. C.; Ye, B. C.; Li, S. Y.; Pang, L. P.; Pan, Y. M.; Tang, H. T. Well-defined coordination environment breaks the bottleneck of organic synthesis: Single-atom palladium catalyzed hydrosilylation of internal alkynes. Nano Res. 2022, 15, 1500–1508.

    Article  CAS  Google Scholar 

  51. Zhang, J.; Wang, Z. Y.; Chen, W. X.; Xiong, Y.; Cheong, W. C.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C.; Peng, Q. et al. Tuning polarity of Cu—O bond in heterogeneous Cu catalyst to promote additive-free hydroboration of alkynes. Chem 2020, 6, 725–737.

    Article  CAS  Google Scholar 

  52. Li, W. H.; Yang, J. R.; Jing, H. Y.; Zhang, J.; Wang, Y.; Li, J.; Zhao, J.; Wang, D. S.; Li, Y. D. Creating high regioselectivity by electronic metal—support interaction of a single-atomic-site catalyst. J. Am. Chem. Soc. 2021, 143, 15453–15461.

    Article  CAS  Google Scholar 

  53. Zhang, X. Y.; Sun, Z. C.; Wang, B.; Tang, Y.; Nguyen, L.; Li, Y. T.; Tao, F. F. C—C coupling on single-atom-based heterogeneous catalyst. J. Am. Chem. Soc. 2018, 140, 954–962.

    Article  CAS  Google Scholar 

  54. Yang, P.; Zuo, S. W.; Zhang, F. T.; Yu, B.; Guo, S. E.; Yu, X. X.; Zhao, Y. F.; Zhang, J.; Liu, Z. M. Carbon nitride-based single-atom Cu catalysts for highly efficient carboxylation of alkynes with atmospheric CO2. Ind. Eng. Chem. Res. 2020, 59, 7327–7335.

    Article  CAS  Google Scholar 

  55. Zhang, J.; Wu, X.; Cheong, W. C.; Chen, W. X.; Lin, R.; Li, J.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C. et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 2018, 9, 1002.

    Article  Google Scholar 

  56. Huang, W. Y.; Wang, G. Q.; Li, W. H.; Li, T. T.; Ji, G. J.; Ren, S. C.; Jiang, M.; Yan, L.; Tang, H. T.; Pan, Y. M. et al. Porous ligand creates new reaction route: Bifunctional single-atom palladium catalyst for selective distannylation of terminal alkynes. Chem 2020, 6, 2300–2313.

    Article  CAS  Google Scholar 

  57. Zhang, J.; Wang, M.; Gao, Z. R.; Qin, X. T.; Xu, Y.; Wang, Z. H.; Zhou, W.; Ma, D. Importance of species heterogeneity in supported metal catalysts. J. Am. Chem. Soc. 2022, 144, 5108–5115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. Z. acknowledges Project supported by Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX03) and the Program of Introducing Talents of Discipline to Universities (No. B16017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Liu, H. & Zhao, J. Transforming bulk alkenes and alkynes into fine chemicals enabled by single-atom site catalysis. Nano Res. 15, 7840–7860 (2022). https://doi.org/10.1007/s12274-022-4495-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4495-z

Keywords

Navigation