Skip to main content
Log in

Highly luminescent zero-dimensional lead-free manganese halides for β-ray scintillation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Because of their moderate penetration power, β-rays (high-energy electrons) are a useful signal for evaluating the surface contamination of nuclear radiation. However, the development of β-ray scintillators, which convert the absorbed high-energy electrons into visible photons, is hindered by the limitations of materials selection. Herein, we report two highly luminescent zero-dimensional (0D) organic—inorganic lead-free metal halide hybrids, (C13H30N)2MnBr4 and (C19H34N)2MnBr4, as scintillators exhibiting efficient β-ray scintillation. These hybrid scintillators combine the superior properties of organic and inorganic components. For example, organic components that contain light elements C, H, and N enhance the capturing efficiency of β particles; isolated inorganic [MnBr4]2− tetrahedrons serve as highly localized emitting centers to emit intense radioluminescence (RL) under β-ray excitation. Both hybrids show a narrow-band green emission peaked at 518 nm with photoluminescence quantum efficiencies (PLQEs) of 81.3% for (C13H30N)2MnBr4 and 86.4% for (C19H34N)2MnBr4, respectively. To enable the solution processing of this promising metal halide hybrid, we successfully synthesized (C13H30N)2MnBr4 colloidal nanocrystals for the first time. Being excited by β-rays, (C13H30N)2MnBr4 scintillators show a linear response to β-ray dose rate over a broad range from 400 to 2,800 Gy·s−1, and also display robust radiation resistance that 80% of the initial RL intensity can be maintained after an ultrahigh accumulated radiation dose of 240 kGy. This work will open up a new route for the development of β-ray scintillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levitt, S. H.; Purdy, J. A.; Perez, C. A.; Poortmans, P. Technical Basis of Radiation Therapy: Practical Clinical Applications; 5th ed. Springer: Heidelberg, 2012.

    Book  Google Scholar 

  2. Chiang, C. S.; Shih, I. J.; Shueng, P. W.; Kao, M.; Zhang, L. W.; Chen, S. F.; Chen, M. H.; Liu, T. Y. Tumor cell-targeting radiotherapy in the treatment of glioblastoma multiforme using linear accelerators. Acta Biomater. 2021, 125, 300–311.

    Article  CAS  Google Scholar 

  3. Pirker, L.; Krajnc, A. P.; Malec, J.; Radulovic, V.; Gradišek, A.; Jelen, A.; Remškar, M.; Mekjavič, I. B.; Kovač, J.; Mozetič, M. et al. Sterilization of polypropylene membranes of facepiece respirators by ionizing radiation. J. Membr. Sci. 2021, 619, 118756.

    Article  CAS  Google Scholar 

  4. Yu, D. J.; Wang, P.; Cao, F.; Gu, Y.; Liu, J. X.; Han, Z. Y.; Huang, B.; Zou, Y. S.; Xu, X. B.; Zeng, H. B. Two-dimensional halide perovskite as beta-ray scintillator for nuclear radiation monitoring. Nat. Commun. 2020, 11, 3395.

    Article  CAS  Google Scholar 

  5. Yamato, S.; Yamaji, A.; Kurosawa, S.; Yoshino, M.; Ohashi, Y.; Kamada, K.; Yokota, Y.; Yoshikawa, A. Crystal growth and luminescence properties of organic crystal scintillators for α-rays detection. Opt. Mater. 2019, 94, 58–63.

    Article  CAS  Google Scholar 

  6. Chen, Q. S.; Wu, J.; Ou, X. Y.; Huang, B. L.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X. W.; Han, S. Y.; Liang, L. L.; Yi, Z. G. et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93.

    Article  CAS  Google Scholar 

  7. Heo, J. H.; Shin, D. H.; Park, J. K.; Kim, D. H.; Lee, S. J.; Im, S. H. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 2018, 30, 1801743.

    Article  Google Scholar 

  8. Lian, L. Y.; Wang, X.; Zhang, P.; Zhu, J. S.; Zhang, X. W.; Gao, J. B.; Wang, S.; Liang, G. J.; Zhang, D. L.; Gao, L. et al. Highly luminescent zero-dimensional organic copper halides for X-ray scintillation. J. Phys. Chem. Lett. 2021, 12, 6919–6926.

    Article  CAS  Google Scholar 

  9. He, Q. Q.; Zhou, C. K.; Xu, L. J.; Lee, S.; Lin, X. S.; Neu, J.; Worku, M.; Chaaban, M.; Ma, B. W. Highly stable organic antimony halide crystals for X-ray scintillation. ACS Mater. Lett. 2020, 2, 633–638.

    Article  CAS  Google Scholar 

  10. McCall, K. M.; Sakhatskyi, K.; Lehmann, E.; Walfort, B.; Losko, A. S.; Montanarella, F.; Bodnarchuk, M. I.; Krieg, F.; Kelestemur, Y.; Mannes, D. et al. Fast neutron imaging with semiconductor nanocrystal scintillators. ACS Nano 2020, 14, 14686–14697.

    Article  CAS  Google Scholar 

  11. Weber, M. J. Inorganic scintillators: Today and tomorrow. J. Lumin. 2002, 100, 35–45.

    Article  CAS  Google Scholar 

  12. Dujardin, C.; Auffray, E.; Bourret-Courchesne, E.; Dorenbos, P.; Lecoq, P.; Nikl, M.; Vasil’ev, A. N.; Yoshikawa, A.; Zhu, R. Y. Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 2018, 65, 1977–1997.

    Article  CAS  Google Scholar 

  13. Yoshikawa, A.; Chani, V.; Nikl, M. Czochralski growth and properties of scintillating crystals. Acta Phys. Pol. A 2013, 124, 250–264.

    Article  CAS  Google Scholar 

  14. Kobayashi, S.; Hayakawa, S. Quenching effects of several compounds in naphthalene scintillators. Jpn. J. Appl. Phys. 1965, 4, 181–189.

    Article  CAS  Google Scholar 

  15. Qin, Y. Y.; She, P. F.; Huang, X. M.; Huang, W.; Zhao, Q. Luminescent manganese(II) complexes: Synthesis, properties and optoelectronic applications. Coord. Chem. Rev. 2020, 416, 213331.

    Article  CAS  Google Scholar 

  16. Morad, V.; Cherniukh, I.; Pöttschacher, L.; Shynkarenko, Y.; Yakunin, S.; Kovalenko, M. V. Manganese(II) in tetrahedral halide environment: Factors governing bright green luminescence. Chem. Mater. 2019, 31, 10161–10169.

    Article  CAS  Google Scholar 

  17. Zhou, G. J.; Liu, Z. Y.; Huang, J. L.; Molokeev, M. S.; Xiao, Z. W.; Ma, C. G.; Xia, Z. G. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: A case study of (C10H16N)2Zn1−xMnxBr4 solid solutions. J. Phys. Chem. Lett. 2020, 11, 5956–5962.

    Article  CAS  Google Scholar 

  18. Ma, Y. Y.; Song, Y. R.; Xu, W. J.; Zhong, Q. Q.; Fu, H. Q.; Liu, X. L.; Yue, C. Y.; Lei, X. W. Solvent-free mechanochemical syntheses of microscale lead-free hybrid manganese halides as efficient green light phosphors. J. Mater. Chem. C 2021, 9, 9952–9961.

    Article  CAS  Google Scholar 

  19. Hu, G. C.; Xu, B.; Wang, A. F.; Guo, Y.; Wu, J. J.; Muhammad, F.; Meng, W.; Wang, C. Y.; Sui, S.; Liu, Y. et al. Stable and bright pyridine manganese halides for efficient white light-emitting diodes. Adv. Funct. Mater. 2021, 31, 2011191.

    Article  CAS  Google Scholar 

  20. Jiang, T. M.; Ma, W. B.; Zhang, H.; Tian, Y.; Lin, G.; Xiao, W. G.; Yu, X.; Qiu, J. B.; Xu, X. H.; Yang, Y. et al. Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications. Adv. Funct. Mater. 2021, 31, 2009973.

    Article  CAS  Google Scholar 

  21. Xu, L. J.; Lin, X. S.; He, Q. Q.; Worku, M.; Ma, B. W. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nat. Commun. 2020, 11, 4329.

    Article  CAS  Google Scholar 

  22. Lian, L. Y.; Zheng, M. Y.; Zhang, P.; Zheng, Z.; Du, K.; Lei, W.; Gao, J. B.; Niu, G. D.; Zhang, D. L.; Zhai, T. Y. et al. Photophysics in Cs3Cu2X5 (X = Cl, Br, or I): Highly luminescent self-trapped excitons from local structure symmetrization. Chem. Mater. 2020, 32, 3462–3468.

    Article  CAS  Google Scholar 

  23. Lian, L. Y.; Zheng, M. Y.; Zhang, W. Z.; Yin, L. X.; Du, X. Y.; Zhang, P.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Adv. Sci. 2020, 7, 2000195.

    Article  CAS  Google Scholar 

  24. Lian, L. Y.; Zhang, P.; Liang, G. J.; Wang, S.; Wang, X.; Wang, Y.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient dualband white-light emission with high color rendering from zero-dimensional organic copper iodide. ACS Appl. Mater. Interfaces 2021, 13, 22749–22756.

    Article  CAS  Google Scholar 

  25. Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892.

    Article  CAS  Google Scholar 

  26. Hajagos, T. J.; Liu, C.; Cherepy, N. J.; Pei, Q. B. High-Z sensitized plastic scintillators: A review. Adv. Mater. 2018, 30, 1706956.

    Article  Google Scholar 

  27. Klitting, O.; Sguerra, F.; Bertrand, G. H. V.; Villemot, V.; Hamel, M. Preparation and characterization of cross-linked plastic scintillators. Polymer 2021, 213, 123214.

    Article  CAS  Google Scholar 

  28. Zhu, J.; Deng, C.; Jiang, H. M.; Zheng, Z. L.; Gong, R.; Bi, Y. T.; Zhang, L.; Lin, R. X. The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 835, 136–141.

    Article  CAS  Google Scholar 

  29. Peralta, L. Temperature dependence of plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 883, 20–23.

    Article  CAS  Google Scholar 

  30. Zorn, C. Studies in the radiation resistance of plastic scintillators review and prospects. IEEE Trans. Nucl. Sci. 1990, 37, 504–512.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61974052, 11774239, and 61827815), the Fund from Science, Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20190809180013252), and the Key Research and Development Program of Hubei Province (No. YFXM2020000188). The authors thank the Analytical and Testing Center of Huazhong University of Science and Technology for the help on measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Qi or Jianbing Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, L., Qi, W., Ding, H. et al. Highly luminescent zero-dimensional lead-free manganese halides for β-ray scintillation. Nano Res. 15, 8486–8492 (2022). https://doi.org/10.1007/s12274-022-4447-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4447-7

Keywords

Navigation