Skip to main content
Log in

Monolayer molecular crystals for low-energy consumption optical synaptic transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Artificial synaptic devices hold great potential in building neuromorphic computers. Due to the unique morphological features, two-dimensional organic semiconductors at the monolayer limit show interesting properties when acting as the active layers for organic field-effect transistors. Here, organic synaptic transistors are prepared with 1,4-bis ((5′-hexyl-2,2′-bithiophen-5-yl) ethyl) benzene (HTEB) monolayer molecular crystals. Functions similar to biological synapses, including excitatory postsynaptic current (EPSC), pair-pulse facilitation, and short/long-term memory, have been realized. The synaptic device achieves the minimum power consumption of 4.29 fJ at low drain voltage of −0.01 V. Moreover, the HTEB synaptic device exhibits excellent long-term memory with 109 s EPSC estimated retention time. Brain-like functions such as dynamic learning-forgetting process and visual noise reduction are demonstrated by nine devices. The unique morphological features of the monolayer molecular semiconductors help to reveal the device working mechanism, and the synaptic behaviors of the devices can be attributed to oxygen induced energy level. This work shows the potential of artificial neuroelectronic devices based on organic monolayer molecular crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, S.; Guo, K. X.; Sun, L.; Ni, Y.; Liu, L.; Xu, W. L.; Yang, L.; Xu, W. T. Selective release of different neurotransmitters emulated by a p-i-n junction synaptic transistor for environment-responsive action control. Adv. Mater. 2021, 33, 2007350.

    Article  CAS  Google Scholar 

  2. Liu, D. P.; Shi, Q. Q.; Dai, S. L.; Huang, J. The design of 3D-interface architecture in an ultralow-power, electrospun single-fiber synaptic transistor for neuromorphic computing. Small 2020, 16, 1907472.

    Article  CAS  Google Scholar 

  3. Yang, Q.; Yang, H. H.; Lv, D. X.; Yu, R. J.; Li, E. L.; He, L. H.; Chen, Q. Z.; Chen, H. P.; Guo, T. L. High-performance organic synaptic transistors with an ultrathin active layer for neuromorphic computing. ACS Appl. Mater. Interfaces 2021, 13, 8672–8681.

    Article  CAS  Google Scholar 

  4. Han, X.; Xu, Z. S.; Wu, W. Q.; Liu, X. H.; Yan, P. G.; Pan, C. F. Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct 2020, 1, 2000029.

    Article  Google Scholar 

  5. Dai, S. L.; Wu, X. H.; Liu, D. P.; Chu, Y. L.; Wang, K.; Yang, B.; Huang, J. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl. Mater. Interfaces 2018, 10, 21472–21480.

    Article  CAS  Google Scholar 

  6. Wang, Y.; Lv, Z. Y.; Liao, Q. F.; Shan, H. Q.; Chen, J. R.; Zhou, Y.; Zhou, L.; Chen, X. L.; Roy, V. A. L.; Wang, Z. P. et al. Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv. Mater. 2018, 30, 1800327.

    Article  Google Scholar 

  7. Gao, C. F.; Lee, M. P.; Li, M. J.; Lee, K. C.; Yang, F. S.; Lin, C. Y.; Watanabe, K.; Taniguchi, T.; Chiu, P. W.; Lien, C. H. et al. Mimic drug dosage modulation for neuroplasticity based on charge-trap layered electronics. Adv. Funct. Mater. 2021, 31, 2005182.

    Article  CAS  Google Scholar 

  8. Yin, L.; Huang, W.; Xiao, R. L.; Peng, W. B.; Zhu, Y. Y.; Zhang, Y. Q.; Pi, X. D.; Yang, D. R. Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett. 2020, 20, 3378–3387.

    Article  CAS  Google Scholar 

  9. Yang, B.; Lu, Y.; Jiang, D. H.; Li, Z. C.; Zeng, Y.; Zhang, S.; Ye, Y.; Liu, Z.; Ou, Q. Q.; Wang, Y. et al. Bioinspired multifunctional organic transistors based on natural chlorophyll/organic semiconductors. Adv. Mater. 2020, 32, 2001227.

    Article  CAS  Google Scholar 

  10. Yang, L.; Singh, M.; Shen, S. W.; Chih, K. Y.; Liu, S. W.; Wu, C. I.; Chu, C. W.; Lin, H. W. Transparent and flexible inorganic perovskite photonic artificial synapses with dual-mode operation. Adv. Funct. Mater. 2020, 31, 2008259.

    Article  Google Scholar 

  11. Yang, F. S.; Li, M. J.; Lee, M. P.; Ho, I. Y.; Chen, J. Y.; Ling, H. F.; Li, Y. Z.; Chang, J. K.; Yang, S. H.; Chang, Y. M. et al. Oxidation-boosted charge trapping in ultra-sensitive van der waals materials for artificial synaptic features. Nat. Commun. 2020, 11, 2972.

    Article  CAS  Google Scholar 

  12. Li, J. K.; Ge, C.; Du, J. Y.; Wang, C.; Yang, G. Z.; Jin, K. J. Reproducible ultrathin ferroelectric domain switching for highperformance neuromorphic computing. Adv. Mater. 2020, 32, 1905764.

    Article  CAS  Google Scholar 

  13. Wang, S. Y.; Zhao, X. L.; Zhang, C.; Yang, Y. H.; Liang, J.; Ni, Y. P.; Zhang, M. X.; Li, J. T.; Ye, X. L.; Zhang, J. D. et al. Suppressing interface strain for eliminating double-slope behaviors: Towards ideal conformable polymer field-effect transistors. Adv. Mater. 2021, 33, 2101633.

    Article  CAS  Google Scholar 

  14. Hao, D. D.; Liu, D. P.; Shen, Y. K.; Shi, Q. Q.; Huang, J. Air-stable self-powered photodetectors based on lead-free CsBi3I10/SnO2 heterojunction for weak light detection. Adv. Funct. Mater. 2021, 31, 2100773.

    Article  CAS  Google Scholar 

  15. Zhang, J. Y.; Lu, Y.; Dai, S. L.; Wang, R. Z.; Hao, D. D.; Zhang, S. Q.; Xiong, L. Z.; Huang, J. Retina-inspired organic heterojunction-based optoelectronic synapses for artificial visual systems. Research 2021, 2021, 7131895.

    Article  CAS  Google Scholar 

  16. Zhang, J. Y.; Shi, Q. Q.; Wang, R. Z.; Zhang, X.; Li, L.; Zhang, J. H.; Tian, L.; Xiong, L. Z.; Huang, J. Spectrum-dependent photonic synapses based on 2D imine polymers for power-efficient neuromorphic computing. InfoMat 2021, 3, 904–916.

    Article  CAS  Google Scholar 

  17. Lv, Z. Y.; Chen, M.; Qian, F. S.; Roy, V. A. L.; Ye, W. B.; She, D. H.; Wang, Y.; Xu, Z. X.; Zhou, Y.; Han, S. T. Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv. Funct. Mater. 2019, 29, 1902374.

    Article  Google Scholar 

  18. Ni, Y.; Ma, M. X.; Wei, H. H.; Gong, J. D.; Han, H.; Liu, L.; Xu, Z. P.; Xu, W. T. Multiplexed neurotransmission emulated for emotion control. Nano Energy 2021, 86, 106038.

    Article  CAS  Google Scholar 

  19. Zhang, S.; Guo, K. X.; Han, H.; Yu, H. Y.; Wei, H. H.; Gong, J. D.; Xu, W. T. Multiplexed neurotransmission emulated by a p-n cross nanowire synaptic transistor for satiety, depression, and drug withdrawal. Adv. Funct. Mater. 2021, 31, 2101917.

    Article  CAS  Google Scholar 

  20. Prezioso, M.; Bayat, F. M.; Hoskins, B.; Likharev, K.; Strukov, D. Self-adaptive spike-time-dependent plasticity of metal-oxide memristors. Sci. Rep. 2016, 6, 21331.

    Article  CAS  Google Scholar 

  21. Lee, H. R.; Lee, D.; Oh, J. H. A hippocampus-inspired dual-gated organic artificial synapse for simultaneous sensing of a neurotransmitter and light. Adv. Mater. 2021, 33, 2100119.

    Article  CAS  Google Scholar 

  22. Choi, Y.; Kim, J. H.; Qian, C.; Kang, J.; Hersam, M. C.; Park, J. H.; Cho, J. H. Gate-tunable synaptic dynamics of ferroelectric-coupled carbon-nanotube transistors. ACS Appl. Mater. Interfaces 2020, 12, 4707–4714.

    Article  CAS  Google Scholar 

  23. Dai, C. Q.; Chen, P. Q.; Qi, S. C.; Hu, Y. B.; Song, Z. T.; Dai, M. Z. Ultrathin flexible InGaZnO transistor for implementing multiple functions with a very small circuit footprint. Nano Res. 2021, 14, 232–238.

    Article  CAS  Google Scholar 

  24. Wang, R. Z.; Chen, P. Y.; Hao, D. D.; Zhang, J. Y.; Shi, Q. Q.; Liu, D. P.; Li, L.; Xiong, L. Z.; Zhou, J. H.; Huang, J. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces 2021, 13, 43144–43154.

    Article  CAS  Google Scholar 

  25. Ran, W. H.; Wang, L. L.; Zhao, S. F.; Wang, D. P.; Yin, R. Y.; Lou, Z.; Shen, G. Z. An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Adv. Mater. 2020, 32, 1908419.

    Article  CAS  Google Scholar 

  26. Yang, B.; Wang, Y.; Li, L.; Zhang, J. Y.; Wang, J. L.; Jiao, H. X.; Hao, D. D.; Guo, P.; Zeng, S.; Hua, Z. K. et al. High performance ternary organic phototransistors with photoresponse up to 2600 nm at room temperature. Adv. Funct. Mater. 2021, 31, 2103787.

    Article  CAS  Google Scholar 

  27. Meng, Q.; Zhang, F. J.; Zang, Y. P.; Huang, D. Z.; Zou, Y.; Liu, J.; Zhao, G. Y.; Wang, Z. R.; Ji, D. Y.; Di, C. A. et al. Solution-sheared ultrathin films for highly-sensitive ammonia detection using organic thin-film transistors. J. Mater. Chem. C 2014, 2, 1264–1269.

    Article  CAS  Google Scholar 

  28. Huang, X. H.; Ji, D. Y.; Fuchs, H.; Hu, W. P.; Li, T. Recent progress in organic phototransistors: Semiconductor materials, device structures and optoelectronic applications. ChemPhotoChem 2020, 4, 9–38.

    Article  CAS  Google Scholar 

  29. Li, L. Q.; Gao, P.; Wang, W. C.; Müllen, K.; Fuchs, H.; Chi, L. F. Growth of ultrathin organic semiconductor microstripes with thickness control in the monolayer precision. Angew. Chem., Int. Ed. 2013, 52, 12530–12535.

    Article  CAS  Google Scholar 

  30. Li, H. Y.; Li, Y.; Li, H.; Brédas, J. L. Organic field-effect transistors: A 3D kinetic monte carlo simulation of the current characteristics in micrometer-sized devices. Adv. Funct. Mater. 2017, 27, 1605715.

    Article  Google Scholar 

  31. Klauk, H.; Zschieschang, U.; Pflaum, J.; Halik, M. Ultralow-power organic complementary circuits. Nature 2007, 445, 745–748.

    Article  CAS  Google Scholar 

  32. Cai, S. L.; Zhang, W. G.; Zuckermann, R. N.; Li, Z. T.; Zhao, X.; Liu, Y. The organic flatland—recent advances in synthetic 2D organic layers. Adv. Mater. 2015, 27, 5762–5770.

    Article  CAS  Google Scholar 

  33. Park, S. K.; Kim, J. H.; Park, S. Y. Organic 2D optoelectronic crystals: Charge transport, emerging functions, and their design perspective. Adv. Mater. 2018, 30, 1704759.

    Article  Google Scholar 

  34. Wang, Q. J.; Qian, J.; Li, Y.; Zhang, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly. Adv. Funct. Mater. 2016, 26, 3191–3198.

    Article  CAS  Google Scholar 

  35. Cao, M.; Zhang, C.; Cai, Z.; Xiao, C. C.; Chen, X. S.; Yi, K. Y.; Yang, Y. G.; Lu, Y. H.; Wei, D. C. Enhanced photoelectrical response of thermodynamically epitaxial organic crystals at the two-dimensional limit. Nat. Commun. 2019, 10, 756.

    Article  CAS  Google Scholar 

  36. Su, S. K.; Chuu, C. P.; Li, M. Y.; Cheng, C. C.; Wong, H. S. P.; Li, L. J. Layered semiconducting 2D materials for future transistor applications. Small Struct. 2021, 2, 2000103.

    Article  CAS  Google Scholar 

  37. Jiang, L.; Dong, H. L.; Meng, Q.; Li, H. X.; He, M.; Wei, Z. M.; He, Y. D.; Hu, W. P. Millimeter-sized molecular monolayer two-dimensional crystals. Adv. Mater. 2011, 23, 2059–2063.

    Article  CAS  Google Scholar 

  38. Fan, Y. W.; Liu, J.; Hu, W. P.; Liu, Y. Q.; Jiang, L. The effect of thickness on the optoelectronic properties of organic field-effect transistors: Towards molecular crystals at monolayer limit. J. Mater. Chem. C 2020, 8, 13154–13168.

    Article  CAS  Google Scholar 

  39. Wang, C. L.; Dong, H. L.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208–2267.

    Article  CAS  Google Scholar 

  40. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926–952.

    Article  CAS  Google Scholar 

  41. He, D. W.; Zhang, Y. H.; Wu, Q. S.; Xu, R.; Nan, H. Y.; Liu, J. F.; Yao, J. J.; Wang, Z. L.; Yuan, S. J.; Li, Y. et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun. 2014, 5, 5162.

    Article  CAS  Google Scholar 

  42. Liu, X. Z.; Galfsky, T.; Sun, Z.; Xia, F. N.; Lin, E. C.; Lee, Y. H.; Kéna-Cohen, S.; Menon, V. M. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics 2015, 9, 30–34.

    Article  CAS  Google Scholar 

  43. Xiao, M. C.; Liu, J.; Liu, C.; Han, G. C.; Shi, Y. J.; Li, C. L.; Zhang, X.; Hu, Y. Y.; Liu, Z. T.; Gao, X. K. et al. Sub-5 nm single crystalline organic p-n heterojunctions. Nat. Commun. 2021, 12, 2774.

    Article  CAS  Google Scholar 

  44. Shi, Y. J.; Jiang, L.; Liu, J.; Tu, Z. Y.; Hu, Y. Y.; Wu, Q. H.; Yi, Y. P.; Gann, E.; McNeill, C. R.; Li, H. X. et al. Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nat. Commun. 2018, 9, 2933.

    Article  Google Scholar 

  45. Cao, W.; Chu, J. H.; Parto, K.; Banerjee, K. A mode-balanced reconfigurable logic gate built in a van der Waals strata. npj 2D Mater. Appl. 2021, 5, 20.

    Article  Google Scholar 

  46. Ni, Y.; Wang, Y. F.; Xu, W. T. Recent process of flexible transistor-structured memory. Small 2021, 17, 1905332.

    Article  CAS  Google Scholar 

  47. Li, M.; Xiong, Z. Y.; Shao, S. S.; Shao, L.; Han, S. T.; Wang, H.; Zhao, J. W. Multimodal optoelectronic neuromorphic electronics based on lead-free perovskite-mixed carbon nanotubes. Carbon 2021, 176, 592–601.

    Article  CAS  Google Scholar 

  48. Jia, R. F.; Wu, X. F.; Deng, W.; Zhang, X. J.; Huang, L. M.; Niu, K. F.; Chi, L. F.; Jie, J. S. Unraveling the mechanism of the persistent photoconductivity in organic phototransistors. Adv. Funct. Mater. 2019, 29, 1905657.

    Article  CAS  Google Scholar 

  49. Najafov, H.; Mastrogiovanni, D.; Garfunkel, E.; Feldman, L. C.; Podzorov, V. Photon-assisted oxygen diffusion and oxygen-related traps in organic semiconductors. Adv. Mater. 2011, 23, 981–985.

    Article  CAS  Google Scholar 

  50. Ogawa, S.; Naijo, T.; Kimura, Y.; Ishii, H.; Niwano, M. Photoinduced doping effect of pentacene field effect transistor in oxygen atmosphere studied by displacement current measurement. Appl. Phys. Lett. 2005, 86, 252104.

    Article  Google Scholar 

  51. Deng, W.; Zhang, X. J.; Jia, R. F.; Huang, L. M.; Zhang, X. H.; Jie, J. S. Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system. NPG Asia Mater. 2019, 11, 77.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 62074111), the Science and Technology Foundation of Shanghai (Nos. 19JC1412402 and 20JC1415600), Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX0100), Shanghai Municipal Commission of Science and Technology Project (No. 19511132101), the Chinese Academy of Sciences (Hundred Talents Plan), the China Postdoctoral Science Foundation funded project (No. 2019M660807), and the support of the Fundamental Research Funds for the Central Universities. The authors are also thankful for the support of Testing and Analysis Center, School of Materials Science and Engineering, Tongji University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Liu, Lang Jiang or Jia Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Z., Yang, B., Zhang, J. et al. Monolayer molecular crystals for low-energy consumption optical synaptic transistors. Nano Res. 15, 7639–7645 (2022). https://doi.org/10.1007/s12274-022-4372-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4372-9

Keywords

Navigation