Skip to main content
Log in

Direct ink writing of conductive materials for emerging energy storage systems

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Direct ink writing (DIW) has recently emerged as an appealing method for designing and fabricating three-dimensional (3D) objects. Complex 3D structures can be built layer-by-layer via digitally controlled extrusion and deposition of aqueous-based colloidal pastes. The formulation of well-dispersed suspensions with specific rheological behaviors is a prerequisite for the use of this route. In this review article, the fundamental concepts of DIW are presented, including the operation principles and basic features. Typical strategies used for ink formulation are discussed with a focus on the most widely used electrode materials, including graphene, Mxenes, and carbon nanotubes. The recent progress in printing design of emerging energy storage systems, encompassing rechargeable batteries, supercapacitors, and hybrid capacitors, is summarized. Challenges and future perspectives are also covered to provide guidance for the future development of DIW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  2. Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4270.

    CAS  Google Scholar 

  3. Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798–801.

    CAS  Google Scholar 

  4. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    CAS  Google Scholar 

  5. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    CAS  Google Scholar 

  6. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    CAS  Google Scholar 

  7. Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

    CAS  Google Scholar 

  8. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    CAS  Google Scholar 

  9. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    CAS  Google Scholar 

  10. Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

    CAS  Google Scholar 

  11. Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1–5.

    CAS  Google Scholar 

  12. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2011, 11, 19–29.

    Google Scholar 

  13. Oh, S. H.; Black, R.; Pomerantseva, E.; Lee, J. H.; Nazar, L. F. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries. Nat. Chem. 2012, 4, 1004–1010.

    CAS  Google Scholar 

  14. Zhu, J. Z.; Wang, F.; Wang, B. Z.; Wang, Y. W.; Liu, J. J.; Zhang, W. Q.; Wen, Z. Y. Surface acidity as descriptor of catalytic activity for oxygen evolution reaction in Li-O2 battery. J. Am. Chem. Soc. 2015, 137, 13572–13579.

    CAS  Google Scholar 

  15. Lu, J.; Lee, Y. J.; Luo, X. Y.; Lau, K. C.; Asadi, M.; Wang, H. H.; Brombosz, S.; Wen, J. G.; Zhai, D. Y.; Chen, Z. H., et al. A lithium-oxygen battery based on lithium superoxide. Nature 2016, 529, 377–382.

    CAS  Google Scholar 

  16. Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A., et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

    CAS  Google Scholar 

  17. Han, J. M.; Fu, Q.; Xi, B. J.; Ni, X. Y.; Yan, C. L.; Feng, J. K.; Xiong, S. L. Loading Fe3O4 nanoparticles on paper-derived carbon scaffold toward advanced lithium-sulfur batteries. J. Energy Chem. 2021, 52, 1–11.

    CAS  Google Scholar 

  18. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

    CAS  Google Scholar 

  19. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 25, 947–958.

    Google Scholar 

  20. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    CAS  Google Scholar 

  21. Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

    CAS  Google Scholar 

  22. Zhang, Q.; Lu, Y. Y.; Miao, L. C.; Zhao, Q.; Xia, K. X.; Liang, J.; Chou, S. L.; Chen, J. An alternative to lithium metal anodes: Non-dendritic and highly reversible sodium metal anodes for Li-Na hybrid batteries. Angew. Chem., Int. Ed. 2018, 57, 14796–14800.

    CAS  Google Scholar 

  23. Wang, Y. G.; Yi, J.; Xia, Y. Y. Recent progress in aqueous lithiumion batteries. Adv. Energy Mater. 2012, 2, 830–840.

    CAS  Google Scholar 

  24. Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 2014, 114, 11788–11827.

    CAS  Google Scholar 

  25. Guo, Z. W.; Zhao, Y.; Ding, Y. X.; Dong, X. L.; Chen, L.; Cao, J. Y.; Wang, C. C.; Xia, Y. Y.; Peng, H. S.; Wang, Y. G. Multifunctional flexible aqueous sodium-ion batteries with high safety. Chem 2017, 3, 348–362.

    CAS  Google Scholar 

  26. Wan, F.; Niu, Z. Q. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 16358–16367.

    Google Scholar 

  27. Wu, X. Y.; Ji, X. L. Aqueous batteries get energetic. Nat. Chem. 2019, 11, 680–681.

    Google Scholar 

  28. Zhang, H.; Liu, X.; Li, H. H.; Hasa, I.; Passerini, S. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 598–616.

    Google Scholar 

  29. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Google Scholar 

  30. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    CAS  Google Scholar 

  31. Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

    CAS  Google Scholar 

  32. Yan, J.; Li, S. H.; Lan, B. B.; Wu, Y. C.; Lee, P. S. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv. Funct. Mater. 2020, 30, 1902564.

    CAS  Google Scholar 

  33. Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.

    CAS  Google Scholar 

  34. Ding, H. B.; Zhang, Q. M.; Gu, H. C.; Liu, X. J.; Sun, L. T.; Gu, M.; Gu, Z. Z. Controlled microstructural architectures based on smart fabrication strategies. Adv. Funct. Mater. 2020, 30, 1901760.

    CAS  Google Scholar 

  35. Tofail, S. A. M.; Koumoulos, E. P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today 2018, 21, 22–37.

    Google Scholar 

  36. Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B. Eng. 2018, 143, 172–196.

    CAS  Google Scholar 

  37. Zhang, F.; Wei, M.; Viswanathan, V. V.; Swart, B.; Shao, Y. Y.; Wu, G.; Zhou, C. 3D printing technologies for electrochemical energy storage. Nano Energy 2017, 40, 418–431.

    CAS  Google Scholar 

  38. Fu, K.; Yao, Y. G.; Dai, J. Q.; Hu, L. B. Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 2017, 29, 1603486.

    Google Scholar 

  39. Lee, C. Y.; Taylor, A. C.; Nattestad, A.; Beirne, S.; Wallace, G. G. 3D printing for electrocatalytic applications. Joule 2019, 3, 1835–1849.

    CAS  Google Scholar 

  40. Browne, M. P.; Redondo, E.; Pumera, M. 3D printing for electrochemical energy applications. Chem. Rev. 2020, 120, 2783–2810.

    CAS  Google Scholar 

  41. Mooraj, S.; Qi, Z.; Zhu, C.; Ren, J.; Peng, S. Y.; Liu, L.; Zhang, S. B.; Feng, S.; Kong, F. Y.; Liu, Y. F., et al. 3D printing of metalbased materials for renewable energy applications. Nano Res. 2021, 14, 2105–2132.

    CAS  Google Scholar 

  42. Freyman, M. C.; Kou, T. Y.; Wang, S. W.; Li, Y. 3D printing of living bacteria electrode. Nano Res. 2020, 13, 1318–1323.

    CAS  Google Scholar 

  43. Chandrasekaran, S.; Yao, B.; Liu, T. Y.; Xiao, W.; Song, Y.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Li, Y., et al. Direct ink writing of organic and carbon aerogels. Mater. Horiz. 2018, 5, 1166–1175.

    CAS  Google Scholar 

  44. Zhao, J. X.; Zhang, Y.; Zhao, X. X.; Wang, R. T.; Xie, J. X.; Yang, C. F.; Wang, J. J.; Zhang, Q. C.; Li, L. L.; Lu, C. H., et al. Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities. Adv. Funct. Mater. 2019, 29, 1900809.

    Google Scholar 

  45. Wan, X.; Luo, L.; Liu, Y. J.; Leng, J. S. Direct ink writing based 4D printing of materials and their applications. Adv. Sci. 2020, 7, 2001000.

    CAS  Google Scholar 

  46. Ambrosi, A.; Pumera, M. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016, 45, 2740–2755.

    CAS  Google Scholar 

  47. Tian, X. C.; Jin, J.; Yuan, S. Q.; Chua, C. K.; Tor, S. B.; Zhou, K. Emerging 3D-printed electrochemical energy storage devices: A critical review. Adv. Energy Mater. 2017, 7, 1700127.

    Google Scholar 

  48. Zhu, C.; Liu, T. Y.; Qian, F.; Chen, W.; Chandrasekaran, S.; Yao, B.; Song, Y.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M., et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 2017, 15, 107–120.

    CAS  Google Scholar 

  49. Zeng, M. X.; Zhang, Y. L. Colloidal nanoparticle inks for printing functional devices: Emerging trends and future prospects. J. Mater. Chem. A 2019, 7, 23301–23336.

    CAS  Google Scholar 

  50. Choi, K. H.; Ahn, D. B.; Lee, S. Y. Current status and challenges in printed batteries: Toward form factor-free, monolithic integrated power sources. ACS Energy Lett. 2018, 3, 220–236.

    CAS  Google Scholar 

  51. Ahn, D. B.; Lee, S. S.; Lee, K. H.; Kim, J. H.; Lee, J. W.; Lee, S. Y. Form factor-free, printed power sources. Energy Storage Mater. 2020, 29, 92–112.

    Google Scholar 

  52. Zhang, X.; Ju, Z. Y.; Zhu, Y.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C.; Yu, G. H. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes. Adv. Energy Mater. 2021, 11, 2000808.

    CAS  Google Scholar 

  53. Lethien, C.; Le Bideau, J.; Brousse, T. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy Environ. Sci. 2019, 12, 96–115.

    Google Scholar 

  54. Pang, Y. K.; Cao, Y. T.; Chu, Y. H.; Liu, M. H.; Snyder, K.; MacKenzie, D.; Cao, C. Y. Additive manufacturing of batteries. Adv. Funct. Mater. 2019, 30, 1906244.

    Google Scholar 

  55. Torrisi, F.; Carey, T. Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today 2018, 23, 73–96.

    CAS  Google Scholar 

  56. Boger, D. V. An introduction to rheology: By H.A. Barnes, J.F. Hutton and K. Walters, Elsevier Science Publishers B.V., Amsterdam, x + 200 pp., price Dfl. 175 (hardcover, ISBN 0-444-87140-3) or Dfl. 115 (paperback, ISBN 0-444-87469-0); students’ pack of 5 paperback copies: Dfl. 475 (students’ packs are not available in U.S.A. and Canada). J. Non-Newton. Fluid Mech. 1989, 32, 331–333.

    Google Scholar 

  57. Li, H. P.; Liang, J. J. Recent development of printed micro-supercapacitors: Printable materials, printing technologies, and perspectives. Adv. Mater. 2020, 32, 1805864.

    CAS  Google Scholar 

  58. Herschel, W. H.; Bulkley, R. Measurement of consistency as applied to rubber benzene solutions. Kolloid-Zeitschrift 1926, 39, 291–300.

    Google Scholar 

  59. Shao, Y. Y.; Sun, Z. T.; Tian, Z. N.; Li, S.; Wu, G. Q.; Wang, M. L.; Tong, X. L.; Shen, F.; Xia, Z.; Tung, V., et al. Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 2021, 31, 2007843.

    CAS  Google Scholar 

  60. Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 2019, 3, 459–470.

    CAS  Google Scholar 

  61. Hu, G. H.; Kang, J.; Ng, L. W. T.; Zhu, X. X.; Howe, R. C. T.; Jones, C. G.; Hersam, M. C.; Hasan, T. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3265–3300.

    CAS  Google Scholar 

  62. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    CAS  Google Scholar 

  63. Fan, X. B.; Zhang, G. L.; Zhang, F. B. Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 2015, 44, 3023–3035.

    CAS  Google Scholar 

  64. Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Recent advances in three-dimensional graphene based materials for catalysis applications. Chem. Soc. Rev. 2018, 47, 2165–2216.

    CAS  Google Scholar 

  65. Fu, W. Y.; Jiang, L.; Van Geest, E. P.; Lima, L. M. C.; Schneider, G. F. Sensing at the surface of graphene field-effect transistors. Adv. Mater. 2017, 29, 1603610.

    Google Scholar 

  66. Vikrant, K.; Kumar, V.; Kim, K. H. Graphene materials as a superior platform for advanced sensing strategies against gaseous ammonia. J. Mater. Chem. A 2018, 6, 22391–22410.

    CAS  Google Scholar 

  67. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

    CAS  Google Scholar 

  68. Wang, B.; Ruan, T. T.; Chen, Y.; Jin, F.; Peng, L.; Zhou, Y.; Wang, D. L.; Dou, S. X. Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 2020, 24, 22–51.

    Google Scholar 

  69. Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

    CAS  Google Scholar 

  70. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

    CAS  Google Scholar 

  71. Chen, D.; Feng, H. B.; Li, J. H. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027–6053.

    CAS  Google Scholar 

  72. Chua, C. K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291–312.

    CAS  Google Scholar 

  73. Naficy, S.; Jalili, R.; Aboutalebi, S. H.; Gorkin III, R. A.; Konstantinov, K.; Innis, P. C.; Spinks, G. M.; Poulin, P.; Wallace, G. G. Graphene oxide dispersions: Tuning rheology to enable fabrication. Mater. Horiz. 2014, 1, 326–331.

    CAS  Google Scholar 

  74. Wang, T.; Tian, X. C.; Li, L.; Lu, L. H.; Hou, S. E.; Cao, G. Z.; Jin, H. Y. 3D printing-based cellular microelectrodes for highperformance asymmetric quasi-solid-state micro-pseudocapacitors. J. Mater. Chem. A 2020, 8, 1749–1756.

    CAS  Google Scholar 

  75. Li, W. B.; Li, Y. H.; Su, M.; An, B. X.; Liu, J.; Su, D.; Li, L. H.; Li, F. Y.; Song, Y. L. Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors. J. Mater. Chem. A 2017, 5, 16281–16288.

    CAS  Google Scholar 

  76. García-Tuñon, E.; Barg, S.; Franco, J.; Bell, R.; Eslava, S.; D’Elia, E.; Maher, R. C.; Guitian, F.; Saiz, E. Printing in three dimensions with graphene. Adv. Mater. 2015, 27, 1688–1693.

    Google Scholar 

  77. Jakus, A. E.; Secor, E. B.; Rutz, A. L.; Jordan, S. W.; Hersam, M. C.; Shah, R. N. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 2015, 9, 4636–4648.

    CAS  Google Scholar 

  78. Zhu, C.; Han, T. Y.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

    CAS  Google Scholar 

  79. Zhu, C.; Liu, T. Y.; Qian, F.; Han, T. Y.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448–3456.

    CAS  Google Scholar 

  80. Jiang, Y. Q.; Xu, Z.; Huang, T. Q.; Liu, Y. J.; Guo, F.; Xi, J. B.; Gao, W. W.; Gao, C. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 2018, 28, 1707024.

    Google Scholar 

  81. Tang, X. W.; Zhou, H.; Cai, Z. C.; Cheng, D. D.; He, P. S.; Xie, P. W.; Zhang, D.; Fan, T. X. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 2018, 12, 3502–3511.

    CAS  Google Scholar 

  82. Jiang, Y.; Shao, H. B.; Li, C. X.; Xu, T.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Versatile graphene oxide putty-like material. Adv. Mater. 2016, 28, 10287–10292.

    CAS  Google Scholar 

  83. Nan, J. X.; Guo, X.; Xiao, J.; Li, X.; Chen, W. H.; Wu, W. J.; Liu, H.; Wang, Y.; Wu, M. H.; Wang, G. X. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 2021, 17, 1902085.

    CAS  Google Scholar 

  84. Huang, W. C.; Hu, L. P.; Tang, Y. F.; Xie, Z. J.; Zhang, H. Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater. 2020, 30, 2005223.

    CAS  Google Scholar 

  85. Zhang, C. F.; McKeon, L.; Kremer, M. P.; Park, S. H.; Ronan, O.; Seral-Ascaso, A.; Barwich, S.; Coileáin, C. Ó.; McEvoy, N.; Nerl, H. C., et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795.

    Google Scholar 

  86. Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of microsupercapacitors with ultra-high energy densities. ACS Nano 2020, 14, 640–650.

    CAS  Google Scholar 

  87. Akuzum, B.; Maleski, K.; Anasori, B.; Lelyukh, P.; Alvarez, N. J.; Kumbur, E. C.; Gogotsi, Y. Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes. ACS Nano 2018, 12, 2685–2694.

    CAS  Google Scholar 

  88. Deng, Y. Q.; Shang, T. X.; Wu, Z. T.; Tao, Y.; Luo, C.; Liang, J. C.; Han, D. L.; Lyu, R. Y.; Qi, C. S.; Lv, W., et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 2019, 31, 1902432.

    CAS  Google Scholar 

  89. Fan, Z. D.; Jin, J.; Li, C.; Cai, J. S.; Wei, C. H.; Shao, Y. L.; Zou, G. F.; Sun, J. Y. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 2021, 15, 3098–3107.

    CAS  Google Scholar 

  90. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    CAS  Google Scholar 

  91. De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

    CAS  Google Scholar 

  92. Bai, Y. X.; Shen, B. Y.; Zhang, S. L.; Zhu, Z. X.; Sun, S. L.; Gao, J.; Li, B. H.; Wang, Y.; Zhang, R. F.; Wei, F. Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 2019, 31, 1800680.

    Google Scholar 

  93. Jang, Y.; Kim, S. M.; Spinks, G. M.; Kim, S. J. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 2020, 32, 1902670.

    CAS  Google Scholar 

  94. Zhang, X. H.; Lu, W. B.; Zhou, G. H.; Li, Q. W. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv. Mater. 2020, 32, 1902028.

    CAS  Google Scholar 

  95. Wang, Y. L.; Zhang, Y.; Wang, G. L.; Shi, X. W.; Qiao, Y. D.; Liu, J. M.; Liu, H. G.; Ganesh, A.; Li, L. Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv. Funct. Mater. 2020, 30, 1907284.

    CAS  Google Scholar 

  96. Chen, B. L.; Jiang, Y. Z.; Tang, X. H.; Pan, Y. Y.; Hu, S. Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl. Mater. Interfaces 2017, 9, 28433–28440.

    CAS  Google Scholar 

  97. Yu, W.; Zhou, H.; Li, B. Q.; Ding, S. J. 3D printing of carbon nanotubes-based microsupercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 4597–4604.

    CAS  Google Scholar 

  98. Sun, C.; Liu, S. R.; Shi, X. L.; Lai, C.; Liang, J. J.; Chen, Y. S. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem. Eng. J. 2020, 381, 122641.

    CAS  Google Scholar 

  99. Liu, C. Y.; Xu, F.; Cheng, X. X.; Tong, J. D.; Liu, Y. L.; Chen, Z. W.; Lao, C. S.; Ma, J. Comparative study on the electrochemical performance of LiFePO4 cathodes fabricated by low temperature 3D printing, direct ink writing and conventional roller coating process. Ceram. Int. 2019, 45, 14188–14197.

    CAS  Google Scholar 

  100. Zhang, C.; Shen, K.; Li, B.; Li, S. M.; Yang, S. B. Continuously 3D printed quantum dot-based electrodes for lithium storage with ultrahigh capacities. J. Mater. Chem. A 2018, 6, 19960–19966.

    CAS  Google Scholar 

  101. Wang, J. W.; Sun, Q.; Gao, X. J.; Wang, C. H.; Li, W. H.; Holness, F. B.; Zheng, M.; Li, R. Y.; Price, A. D.; Sun, X. H., et al. Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach. ACS Appl. Mater. Interfaces 2018, 10, 39794–39801.

    CAS  Google Scholar 

  102. Li, J.; Liang, X. H.; Liou, F.; Park, J. Macro-/micro-controlled 3D lithium-ion batteries via additive manufacturing and electric field processing. Sci. Rep. 2018, 8, 1846.

    Google Scholar 

  103. Liu, C. Y.; Cheng, X. X.; Li, B. H.; Chen, Z. W.; Mi, S. L.; Lao, C. S. Fabrication and characterization of 3D-printed highly-porous 3D LiFePO4 electrodes by low temperature direct writing process. Materials 2017, 10, 934.

    Google Scholar 

  104. Li, J.; Leu, M. C.; Panat, R.; Park, J. A hybrid three-dimensionally structured electrode for lithium-ion batteries via 3D printing. Mater. Des. 2017, 119, 417–424.

    CAS  Google Scholar 

  105. Kohlmeyer, R. R.; Blake, A. J.; Hardin, J. O.; Carmona, E. A.; Carpena-Núñez, J.; Maruyama, B.; Daniel Berrigan, J.; Huang, H.; Durstock, M. F. Composite batteries: A simple yet universal approach to 3D printable lithium-ion battery electrodes. J. Mater. Chem. A 2016, 4, 16856–16864.

    CAS  Google Scholar 

  106. Hu, J. T.; Jiang, Y.; Cui, S. H.; Duan, Y. D.; Liu, T. C.; Guo, H.; Lin, L. P.; Lin, Y.; Zheng, J. X.; Amine, K., et al. 3D-printed cathodes of LiMn1−xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Adv. Energy Mater. 2016, 6, 1600856.

    Google Scholar 

  107. Izumi, A.; Sanada, M.; Furuichi, K.; Teraki, K.; Matsuda, T.; Hiramatsu, K.; Munakata, H.; Kanamura, K. Development of high capacity lithium-ion battery applying three-dimensionally patterned electrode. Electrochim. Acta 2012, 79, 218–222.

    CAS  Google Scholar 

  108. Wei, T. S.; Ahn, B. Y.; Grotto, J.; Lewis, J. A. 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 2018, 30, 1703027.

    Google Scholar 

  109. Park, J. S.; Kim, T.; Kim, W. S. Conductive cellulose composites with low percolation threshold for 3D printed electronics. Sci. Rep. 2017, 7, 3246.

    Google Scholar 

  110. Fu, K.; Wang, Y. B.; Yan, C. Y.; Yao, Y. G.; Chen, Y. A.; Dai, J. Q.; Lacey, S.; Wang, Y. B.; Wan, J. Y.; Li, T., et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 2016, 28, 2587–2594.

    CAS  Google Scholar 

  111. Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 2013, 25, 4539–4543.

    CAS  Google Scholar 

  112. Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Fan, Z. D.; Jin, J.; Wang, M. L.; Sun, J. Y. Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li-S batteries. Adv. Funct. Mater. 2021, 31, 2006798.

    CAS  Google Scholar 

  113. Cai, J. S.; Fan, Z. D.; Jin, J.; Shi, Z. X.; Dou, S. X.; Sun, J. Y.; Liu, Z. F. Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li-S batteries with high rate capability and areal capacity. Nano Energy 2020, 75, 104970.

    CAS  Google Scholar 

  114. Gao, X. J.; Yang, X. F.; Sun, Q.; Luo, J.; Liang, J. N.; Li, W. H.; Wang, J. W.; Wang, S. Z.; Li, M. S.; Li, R. Y., et al. Converting a thick electrode into vertically aligned “Thin electrodes” by 3D-printing for designing thickness independent Li-S cathode. Energy Storage Mater. 2020, 24, 682–688.

    Google Scholar 

  115. Chen, C. L.; Jiang, J. M.; He, W. J.; Lei, W.; Hao, Q. L.; Zhang, X. G. 3D printed high-loading lithium-sulfur battery toward wearable energy storage. Adv. Funct. Mater. 2020, 30, 1909469.

    CAS  Google Scholar 

  116. Gao, X. J.; Sun, Q.; Yang, X. F.; Liang, J. N.; Koo, A.; Li, W. H.; Liang, J. W.; Wang, J. W.; Li, R. Y.; Holness, F. B., et al. Toward a remarkable Li-S battery via 3D printing. Nano Energy 2019, 56, 595–603.

    CAS  Google Scholar 

  117. Shen, K.; Mei, H. L.; Li, B.; Ding, J. W.; Yang, S. B. 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv. Energy Mater. 2018, 8, 1701527.

    Google Scholar 

  118. Wei, C. H.; Tian, M.; Wang, M. L.; Shi, Z. X.; Yu, L. H.; Li, S.; Fan, Z. D.; Yang, R. Z.; Sun, J. Y. Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li-S batteries. ACS Nano 2020, 14, 16073–16084.

    CAS  Google Scholar 

  119. Lyu, Z.; Lim, G. J. H.; Guo, R.; Kou, Z. K.; Wang, T. T.; Guan, C.; Ding, J.; Chen, W.; Wang, J. 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv. Funct. Mater. 2019, 29, 1806658.

    Google Scholar 

  120. Lacey, S. D.; Kirsch, D. J.; Li, Y. J.; Morgenstern, J. T.; Zarket, B. C.; Yao, Y. G.; Dai, J. Q.; Garcia, L. Q.; Liu, B. Y.; Gao, T. T., et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 2018, 30, 1705651.

    Google Scholar 

  121. Qiao, Y.; Liu, Y.; Chen, C. J.; Xie, H.; Yao, Y. G.; He, S. M.; Ping, W. W.; Liu, B. Y.; Hu, L. B. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv. Funct. Mater. 2018, 28, 1805899.

    Google Scholar 

  122. Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

    Google Scholar 

  123. Zhou, L. M.; Zhang, K.; Hu, Z.; Tao, Z. L.; Mai, L. Q.; Kang, Y. M.; Chou, S. L.; Chen, J. Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1701415.

    Google Scholar 

  124. Ouyang, J. Application of intrinsically conducting polymers in flexible electronics. SmartMat 2021, 2, 263–285.

    CAS  Google Scholar 

  125. Gao, L. F.; Zhang, G. Q.; Cai, J.; Huang, L.; Zhou, J.; Zhang, L. N. Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Res. 2020, 13, 1604–1613.

    CAS  Google Scholar 

  126. Bao, Y. H.; Liu, Y.; Kuang, Y. D.; Fang, D. N.; Li, T. 3D-printed highly deformable electrodes for flexible lithium ion batteries. Energy Storage Mater. 2020, 33, 55–61.

    Google Scholar 

  127. Wang, Y. B.; Chen, C. J.; Xie, H.; Gao, T. T.; Yao, Y. G.; Pastel, G.; Han, X. G.; Li, Y. J.; Zhao, J. P.; Fu, K., et al. 3D-printed allfiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 2017, 27, 1703140.

    Google Scholar 

  128. Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A., et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 2013, 5, 518–524.

    CAS  Google Scholar 

  129. Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.

    Google Scholar 

  130. Lim, W. G.; Kim, S.; Jo, C.; Lee, J. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics. Angew. Chem., Int. Ed. 2019, 58, 18746–18757.

    CAS  Google Scholar 

  131. Wang, P.; Xi, B. J.; Huang, M.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Emerging catalysts to promote kinetics of lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2002893.

    CAS  Google Scholar 

  132. Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.

    CAS  Google Scholar 

  133. Liu, G. Z.; Huang, M.; Zhang, Z. C. Y.; Xi, B. J.; Li, H. B.; Xiong, S. L. Robust S-doped TiO2@N, S-codoped carbon nanotube arrays as free-binder anodes for efficient sodium storage. J. Energy Chem. 2021, 53, 175–184.

    CAS  Google Scholar 

  134. Huang, M.; Xi, B. J.; Shi, N. X.; Feng, J. K.; Qian, Y. T.; Xue, D. F.; Xiong, S. L. Quantum-matter Bi/TiO2 heterostructure embedded in N-doped porous carbon nanosheets for enhanced sodium storage. Small Struct. 2020, 2, 2000085.

    Google Scholar 

  135. Ding, J. W.; Shen, K.; Du, Z. G.; Li, B.; Yang, S. B. 3D-printed hierarchical porous frameworks for sodium storage. ACS Appl. Mater. Interfaces 2017, 9, 41871–41877.

    CAS  Google Scholar 

  136. Lu, C.; Sun, Z. T.; Yu, L. H.; Lian, X. Y.; Yi, Y. Y.; Li, J.; Liu, Z. F.; Dou, S. X.; Sun, J. Y. Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv. Energy Mater. 2020, 10, 2001161.

    CAS  Google Scholar 

  137. Zhang, J.; Li, X. L.; Fan, S.; Huang, S. Z.; Yan, D.; Liu, L.; Alvarado, P. V. Y.; Yang, H. Y. 3D-printed functional electrodes towards Zn-air batteries. Mater. Today Energy 2020, 16, 100407.

    Google Scholar 

  138. Ma, T. C.; Devin MacKenzie, J. Fully printed, high energy density flexible zinc-air batteries based on solid polymer electrolytes and a hierarchical catalyst current collector. Flex. Print. Electron. 2019, 4, 015010.

    CAS  Google Scholar 

  139. Wang, X.; Zhang, Z. C. Y.; Xi, B. J.; Chen, W. H.; Jia, Y. X.; Feng, J. K.; Xiong, S. L. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano 2021, 15, 9244–9272.

    CAS  Google Scholar 

  140. Ma, H.; Tian, X. C.; Wang, T.; Tang, K.; Liu, Z. X.; Hou, S. E.; Jin, H. Y.; Cao, G. Z. Tailoring pore structures of 3D printed cellular high-loading cathodes for advanced rechargeable zinc-ion batteries. Small 2021, 17, 2100746.

    CAS  Google Scholar 

  141. Cao, D. X.; Xing, Y. J.; Tantratian, K.; Wang, X.; Ma, Y.; Mukhopadhyay, A.; Cheng, Z.; Zhang, Q.; Jiao, Y. C.; Chen, L., et al. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv. Mater. 2019, 31, 1807313.

    Google Scholar 

  142. Lyu, Z.; Lim, G. J. H.; Guo, R.; Pan, Z. H.; Zhang, X.; Zhang, H.; He, Z. M.; Adams, S.; Chen, W.; Ding, J., et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater. 2020, 24, 336–342.

    Google Scholar 

  143. Shen, K.; Li, B.; Yang, S. B. 3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy Storage Mater. 2020, 24, 670–675.

    Google Scholar 

  144. Lim, G. J. H.; Lyu, Z.; Zhang, X.; Koh, J. J.; Zhang, Y.; He, C. B.; Adams, S.; Wang, J.; Ding, J. Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. J. Mater. Chem. A 2020, 8, 9058–9067.

    CAS  Google Scholar 

  145. Yu, Y. K.; Wang, Z. Y.; Hou, Z.; Ta, W. R.; Wang, W. H.; Zhao, X. X.; Li, Q.; Zhao, Y. S.; Zhang, Q. Q.; Quan, Z. W. 3D printing of hierarchical graphene lattice for advanced Na metal anodes. ACS Appl. Energy Mater. 2019, 2, 3869–3877.

    CAS  Google Scholar 

  146. Yan, J.; Zhi, G.; Kong, D. Z.; Wang, H.; Xu, T. T.; Zang, J. H.; Shen, W. X.; Xu, J. M.; Shi, Y. M.; Dai, S. G., et al. 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. J. Mater. Chem. A 2020, 8, 19843–19854.

    CAS  Google Scholar 

  147. Li, M.; Liu, T. C.; Bi, X. X.; Chen, Z. W.; Amine, K.; Zhong, C.; Lu, J. Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 2020, 49, 1688–1705.

    CAS  Google Scholar 

  148. Liu, D. H.; Bai, Z. Y.; Li, M.; Yu, A. P.; Luo, D.; Liu, W. W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z. W. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives. Chem. Soc. Rev. 2020, 49, 5407–5445.

    CAS  Google Scholar 

  149. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    CAS  Google Scholar 

  150. Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M., et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

    CAS  Google Scholar 

  151. Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

    CAS  Google Scholar 

  152. Jin, D.; Park, J.; Ryou, M. H.; Lee, Y. M. Structure-controlled Li metal electrodes for post-Li-ion batteries: Recent progress and perspectives. Adv. Mater. Interfaces 2020, 7, 1902113.

    CAS  Google Scholar 

  153. Park, S.; Jin, H. J.; Yun, Y. S. Advances in the design of 3D-structured electrode materials for lithium-metal anodes. Adv. Mater. 2020, 32, 2002193.

    CAS  Google Scholar 

  154. Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

    CAS  Google Scholar 

  155. Cai, J. S.; Jin, J.; Fan, Z. D.; Li, C.; Shi, Z. X.; Sun, J. Y.; Liu, Z. F. 3D printing of a V8C7—VO2 bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li-S batteries. Adv. Mater. 2020, 32, 2005967.

    CAS  Google Scholar 

  156. Wei, C. H.; Tian, M.; Fan, Z. D.; Yu, L. H.; Song, Y. Z.; Yang, X. Z.; Shi, Z. X.; Wang, M. L.; Yang, R. Z.; Sun, J. Y. Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti3C2 MXene framework toward advanced Li-S full batteries. Energy Storage Mater. 2021, 41, 141–151.

    Google Scholar 

  157. Li, X. R.; Li, H. P.; Fan, X. Q.; Shi, X. L.; Liang, J. J. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 2020, 10, 1903794.

    CAS  Google Scholar 

  158. Yun, X. W.; Lu, B. C.; Xiong, Z. Y.; Jia, B.; Tang, B.; Mao, H. A.; Zhang, T.; Wang, X. G. Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor. RSC Adv. 2019, 9, 29384–29395.

    CAS  Google Scholar 

  159. Yu, L. H.; Fan, Z. D.; Shao, Y. L.; Tian, Z. N.; Sun, J. Y.; Liu, Z. F. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 2019, 9, 1901839.

    Google Scholar 

  160. Yang, W. J.; Yang, J.; Byun, J. J.; Moissinac, F. P.; Xu, J. Q.; Haigh, S. J.; Domingos, M.; Bissett, M. A.; Dryfe, R. A. W.; Barg, S. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 2019, 31, 1902725.

    Google Scholar 

  161. Wang, T.; Li, L.; Tian, X. C.; Jin, H. Y.; Tang, K.; Hou, S. E.; Zhou, H.; Yu, X. H. 3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors. Electrochim. Acta 2019, 319, 245–252.

    CAS  Google Scholar 

  162. Tian, X. C.; Tang, K.; Jin, H. Y.; Wang, T.; Liu, X. W.; Yang, W.; Zou, Z. C.; Hou, S. E.; Zhou, K. Boosting capacitive charge storage of 3D-printed micro-pseudocapacitors via rational holey graphene engineering. Carbon 2019, 155, 562–569.

    CAS  Google Scholar 

  163. Ma, C. X.; Wang, R. X.; Tetik, H.; Gao, S. J.; Wu, M.; Tang, Z. Y.; Lin, D.; Ding, D.; Wu, W. Z. Hybrid nanomanufacturing of mixed-dimensional manganese oxide/graphene aerogel macroporous hierarchy for ultralight efficient supercapacitor electrodes in self-powered ubiquitous nanosystems. Nano Energy 2019, 66, 104124.

    CAS  Google Scholar 

  164. Gao, T. T.; Zhou, Z.; Yu, J. Y.; Zhao, J.; Wang, G. L.; Cao, D. X.; Ding, B.; Li, Y. J. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv. Energy Mater. 2019, 9, 1802578.

    Google Scholar 

  165. Zhang, Y.; Ji, T. X.; Hou, S. H.; Zhang, L. F.; Shi, Y. H.; Zhao, J. X.; Xu, X. H. All-printed solid-state substrate-versatile and highperformance micro-supercapacitors for in situ fabricated transferable and wearable energy storage via multi-material 3D printing. J. Power Sources 2018, 403, 109–117.

    CAS  Google Scholar 

  166. Wang, Z. S.; Zhang, Q. E.; Long, S. C.; Luo, Y. X.; Yu, P. K.; Tan, Z. B.; Bai, J.; Qu, B. H.; Yang, Y.; Shi, J., et al. Three-dimensional printing of polyaniline/reduced graphene oxide composite for highperformance planar supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 10437–10444.

    CAS  Google Scholar 

  167. Wang, W. J.; Zhang, Y.; Zhang, L. F.; Shi, Y. H.; Jia, L. M.; Zhang, Q.; Xu, X. H. Flexible Mn3O4 nanosheet/reduced graphene oxide nanosheet paper-like electrodes for electrochemical energy storage and three-dimensional multilayers printing. Mater. Lett. 2018, 213, 100–103.

    CAS  Google Scholar 

  168. Rocha, V. G.; García-Tuñón, E.; Botas, C.; Markoulidis, F.; Feilden, E.; DoElia, E.; Ni, N.; Shaffer, M.; Saiz, E. Multimaterial 3D printing of graphene-based electrodes for electrochemical energy storage using thermoresponsive inks. ACS Appl. Mater. Interfaces 2017, 9, 37136–37145.

    CAS  Google Scholar 

  169. Lin, Y.; Liu, F.; Casano, G.; Bhavsar, R.; Kinloch, I. A.; Derby, B. Pristine graphene aerogels by room-temperature freeze gelation. Adv. Mater. 2016, 28, 7993–8000.

    CAS  Google Scholar 

  170. Nathan-Walleser, T.; Lazar, I. M.; Fabritius, M.; Tölle, F. J.; Xia, Q.; Bruchmann, B.; Venkataraman, S. S.; Schwab, M. G.; Mülhaupt, R. 3D micro-extrusion of graphene-based active electrodes: Towards high-rate AC line filtering performance electrochemical capacitors. Adv. Funct. Mater. 2014, 24, 4706–4716.

    CAS  Google Scholar 

  171. Yuan, S. J.; Fan, W.; Wang, D.; Zhang, L. S.; Miao, Y. E.; Lai, F. L.; Liu, T. X. 3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance. J. Mater. Chem. A 2021, 9, 423–432.

    CAS  Google Scholar 

  172. Lai, F. L.; Yang, C.; Lian, R. Q.; Chu, K. B.; Qin, J. J.; Zong, W.; Rao, D. W.; Hofkens, J.; Lu, X. H.; Liu, T. X. Three-phase boundary in cross-coupled micro-mesoporous networks enabling 3D-printed and ionogel-based quasi-solid-state micro-supercapacitors. Adv. Mater. 2020, 32, 2002474.

    CAS  Google Scholar 

  173. Yu, L. H.; Li, W. P.; Wei, C. H.; Yang, Q. F.; Shao, Y. L.; Sun, J. Y. 3D printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nano-Micro Lett. 2020, 12, 143.

    CAS  Google Scholar 

  174. Yao, B.; Chandrasekaran, S.; Zhang, H. Z.; Ma, A. N.; Kang, J. Z.; Zhang, L.; Lu, X. H.; Qian, F.; Zhu, C.; Duoss, E. B., et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater. 2020, 32, 1906652.

    CAS  Google Scholar 

  175. Shen, K.; Ding, J. W.; Yang, S. B. 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 2018, 8, 1800408.

    Google Scholar 

  176. Liu, Y. Q.; Zhang, B. B.; Xu, Q.; Hou, Y. Y.; Seyedin, S.; Qin, S.; Wallace, G. G.; Beirne, S.; Razal, J. M.; Chen, J. Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 2018, 28, 1706592.

    Google Scholar 

  177. Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.

    CAS  Google Scholar 

  178. Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric supercapacitor electrodes and devices. Adv. Mater. 2017, 29, 1605336.

    Google Scholar 

  179. Tang, X. W.; Zhu, C. L.; Cheng, D. D.; Zhou, H.; Liu, X. H.; Xie, P. W.; Zhao, Q. B.; Zhang, D.; Fan, T. X. Architectured leaf-inspired Ni0.33Co0.66S2/Graphene aerogels via 3D printing for high-performance energy storage. Adv. Funct. Mater. 2018, 28, 1805057.

    Google Scholar 

  180. Zong, W.; Guo, H. L.; Ouyang, Y.; Mo, L. L.; Zhou, C. Y.; Chao, G. Y.; Hofkens, J.; Xu, Y.; Wang, W.; Miao, Y. E. et al. Topochemistry-driven synthesis of transition-metal selenides with weakened van der Waals force to enable 3D-printed Na-ion hybrid capacitors. Adv. Funct. Mater., in press, DOI: https://doi.org/10.1002/adfm.202110016.

  181. Fan, Z. D.; Wei, C. H.; Yu, L. H.; Xia, Z.; Cai, J. S.; Tian, Z. N.; Zou, G. F.; Dou, S. X.; Sun, J. Y. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano 2020, 14, 867–876.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52073177) and Key Project of Department of Education of Guangdong Province (No. 2020KTSCX118). The authors acknowledge the support from Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Suzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-yun Li or Jingyu Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Liu, W., Su, C. et al. Direct ink writing of conductive materials for emerging energy storage systems. Nano Res. 15, 6091–6111 (2022). https://doi.org/10.1007/s12274-022-4200-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4200-2

Keywords

Navigation