Skip to main content
Log in

Simultaneous Raman and reflection UV/Vis absorption spectroelectrochemistry

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the present work, a new combination of Raman and ultraviolet and visible (UV/Vis) absorption spectroelectrochemistry in reflection mode is proposed. The new experimental setup allows obtaining the two kinds of spectroscopic data without interferences concomitantly with the electrochemical information. To the best of our knowledge, it is the first time to report the simultaneous obtention of electrochemical, electronic, and vibrational information in the same experiment. This new combination provides time-resolved information about the processes that are taking place on the electrode/solution interface which has significant implications in different fields of chemistry, such as modification of electrodes, studies of electrocatalytic reaction mechanisms, development of sensors, among others. Two different systems were used to demonstrate the advantages and capabilities of the brand-new technique, namely, the oxidation of potassium ferrocyanide, an out-sphere system that is usually employed in the validation of SEC techniques, and the electrochemical-surface enhanced Raman spectroscopy (EC-SERS) detection of crystal violet by in-situ formation of the silver SERS substrate, where the UV/Vis spectra were used to follow the formation of the SERS substrate, whereas the Raman response of a probe molecule was used to confirm either the formation of a nanostructured surface and to obtain the fingerprint of the molecule with a high time resolution. The brand-new experimental setup has shown to be useful, versatile, robust, compact, and easy to use for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heineman, W. R. Spectroelectrochemistry. Combination of optical and electrochemical techniques for studies of redox chemistry. Anal. Chem. 1978, 50, 390A–402A.

    CAS  Google Scholar 

  2. Kuwana, T.; Darlington, R. K.; Leedy, D. W. Electrochemical studies using conducting glass indicator electrodes. Anal. Chem. 1964, 36, 2023–2025.

    Article  CAS  Google Scholar 

  3. Dunsch, L. Recent advances in in situ multi-spectroelectrochemistry. J. Solid State Electrochem. 2011, 15, 1631–1646.

    Article  CAS  Google Scholar 

  4. Heineman, W. R. Spectroelectrochemistry: The combination of optical and electrochemical techniques. J. Chem. Educ. 1983, 60, 305.

    Article  CAS  Google Scholar 

  5. Garoz-Ruiz, J.; Perales-Rondon, J. V.; Heras, A.; Colina, A. Spectroelectrochemical sensing: Current trends and challenges. Electroanalysis 2019, 31, 1254–1278.

    Article  CAS  Google Scholar 

  6. Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Kinetics and mechanism of the electrooxidation of formic acid—Spectroelectrochemical studies in a flow cell. Angew. Chem., Int. Ed. 2006, 45, 981–985.

    Article  CAS  Google Scholar 

  7. Martín-Yerga, D.; Pérez-Junquera, A.; Hernández-Santos, D.; Fanjul-Bolado, P. Time-resolved luminescence spectroelectrochemistry at screen-printed electrodes: Following the redox-dependent fluorescence of [Ru(Bpy)3]2+. Anal. Chem. 2017, 89, 10649–10654.

    Article  CAS  Google Scholar 

  8. Ibañez, D.; Fernandez-Blanco, C.; Heras, A.; Colina, A. Time-resolved study of the surface-enhanced Raman scattering effect of silver nanoparticles generated in voltammetry experiments. J. Phys. Chem. C 2014, 118, 23426–23433.

    Article  CAS  Google Scholar 

  9. Ibañez, D.; Plana, D.; Heras, A.; Fermín, D. J.; Colina, A. Monitoring charge transfer at polarisable liquid/liquid interfaces employing time-resolved Raman spectroelectrochemistry. Electrochem. Commun. 2015, 54, 14–17.

    Article  CAS  Google Scholar 

  10. López-Palacios, J.; Colina, A.; Heras, A.; Ruiz, V.; Fuente, L. Bidimensional spectroelectrochemistry. Anal. Chem. 2001, 73, 2883–2889.

    Article  CAS  Google Scholar 

  11. Garoz-Ruiz, J.; Heras, A.; Palmero, S.; Colina, A. Development of a novel bidimensional spectroelectrochemistry cell using transfer single-walled carbon nanotubes films as optically transparent electrodes. Anal. Chem. 2015, 87, 6233–6239.

    Article  CAS  Google Scholar 

  12. Izquierdo, D.; Ferraresi-Curotto, V.; Heras, A.; Pis-Diez, R.; Gonzalez-Baro, A. C.; Colina, A. Bidimensional Spectroelectrochemistry: Application of a new device in the study of a o-vanillin-copper(II) complex. Electrochim. Acta 2017, 245, 79–87.

    Article  CAS  Google Scholar 

  13. Skully, J. P.; McCreery, R. L. Glancing incidence external reflection spectroelectrochemistry with a continuum source. Anal. Chem. 1980, 52, 1885–1889.

    Article  CAS  Google Scholar 

  14. Kudelski, A. Analytical applications of Raman spectroscopy. Talanta 2008, 76, 1–8.

    Article  CAS  Google Scholar 

  15. Mulvaney, S. P.; Keating, C. D. Raman spectroscopy. Anal. Chem. 2000, 72, 145–158.

    Article  CAS  Google Scholar 

  16. Haynes, C. L.; McFarland, A. D.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Anal. Chem. 2005, 77, 338 A–346 A.

    Article  CAS  Google Scholar 

  17. Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem., Int. Ed. 2014, 53, 4756–4795.

    Article  CAS  Google Scholar 

  18. Tian, Z. Q. Surface-enhanced Raman spectroscopy: Advancements and applications. J. Raman Spectrosc. 2005, 36, 466–470.

    Article  CAS  Google Scholar 

  19. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.

    Article  CAS  Google Scholar 

  20. Sharma, B.; Frontiera, R. R.; Henry, A. I.; Ringe, E.; Van Duyne, R. P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25.

    Article  CAS  Google Scholar 

  21. Prikhozhdenko, E. S.; Bratashov, D. N.; Gorin, D. A.; Yashchenok, A. M. Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Res. 2018, 11, 4468–4488.

    Article  CAS  Google Scholar 

  22. Zong, C.; Chen, C. J.; Zhang, M.; Wu, D. Y.; Ren, B. Transient electrochemical surface-enhanced Raman spectroscopy: A millisecond time-resolved study of an electrochemical redox process. J. Am. Chem. Soc. 2015, 137, 11768–11774.

    Article  CAS  Google Scholar 

  23. Wu, D. Y.; Li, J. F.; Ren, B.; Tian, Z. Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041.

    Article  CAS  Google Scholar 

  24. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

    Article  CAS  Google Scholar 

  25. Cortés, E.; Etchegoin, P. G.; Le Ru, E. C.; Fainstein, A.; Vela, M. E.; Salvarezza, R. C. Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2010, 132, 18034–18037.

    Article  CAS  Google Scholar 

  26. Zhang, H.; Zhang, X. G.; Wei, J.; Wang, C.; Chen, S.; Sun, H. L.; Wang, Y. H.; Chen, B. H.; Yang, Z. L.; Wu, D. Y. et al. Revealing the role of interfacial properties on catalytic behaviors by in situ surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2017, 139, 10339–10346.

    Article  CAS  Google Scholar 

  27. Zhan, C.; Chen, X. J.; Huang, Y. F.; Wu, D. Y.; Tian, Z. Q. Plasmon-mediated chemical reactions on nanostructures unveiled by surface-enhanced Raman spectroscopy. Acc. Chem. Res. 2019, 52, 2784–2792.

    Article  CAS  Google Scholar 

  28. Sun, L. L.; Fang, Y. M.; Li, Z. M.; Wang, W.; Chen, H. Y. Simultaneous optical and electrochemical recording of single nanoparticle electrochemistry. Nano Res. 2017, 10, 1740–1748.

    Article  Google Scholar 

  29. Yang, X. G.; Wang, Y. X.; Li, C. M.; Wang, D. W. Mechanisms of water oxidation on heterogeneous catalyst surfaces. Nano Res. 2021, 14, 3446–3457.

    Article  CAS  Google Scholar 

  30. Ibañez, D.; Garoz-Ruiz, J.; Heras, A.; Colina, A. Simultaneous UV-visible absorption and Raman spectroelectrochemistry. Anal. Chem. 2016, 88, 8210–8217.

    Article  CAS  Google Scholar 

  31. Schroll, C. A.; Chatterjee, S.; Heineman, W. R.; Bryan, S. A. Semi-infinite linear diffusion spectroelectrochemistry on an aqueous micro-drop. Anal. Chem. 2011, 83, 4214–4219.

    Article  CAS  Google Scholar 

  32. Schorr, N. B.; Jiang, A. G.; Rodríguez-López, J. Probing graphene interfacial reactivity via simultaneous and colocalized Raman-scanning electrochemical microscopy imaging and interrogation. Anal. Chem. 2018, 90, 7848–7854.

    Article  CAS  Google Scholar 

  33. Gómez, E.; García-Torres, J.; Vallés, E. Study and preparation of silver electrodeposits at negative potentials. J. Electroanal. Chem. 2006, 594, 89–95.

    Article  CAS  Google Scholar 

  34. Foster, D. G.; Shapir, Y.; Jorné, J. Scaling of roughness in silver electrodeposition. J. Electrochem. Soc. 2003, 150, C375.

    Article  CAS  Google Scholar 

  35. Ibañez, D.; Izquierdo, D.; Fernandez-Blanco, C.; Heras, A.; Colina, A. Electrodeposition of silver nanoparticles in the presence of different complexing agents by time-resolved Raman spectroelectrochemistry. J. Raman Spectrosc. 2018, 49, 482–492.

    Article  CAS  Google Scholar 

  36. Perales-Rondon, J. V.; Hernandez, S.; Martin-Yerga, D.; Fanjul-Bolado, P.; Heras, A.; Colina, A. Electrochemical surface oxidation enhanced Raman scattering. Electrochim. Acta 2018, 282, 377–383.

    Article  CAS  Google Scholar 

  37. Siek, M.; Kaminska, A.; Kelm, A.; Rolinski, T.; Holyst, R.; Opallo, M. Niedziolka-Jonsson, J. Electrodeposition for preparation of efficient surface-enhanced Raman scattering-active silver nanoparticle substrates for neurotransmitter detection. Electrochim. Acta 2013, 89, 284–291.

    Article  CAS  Google Scholar 

  38. Zarkadas, G. M.; Stergiou, A.; Papanastasiou, G. Influence of citric acid on the silver electrodeposition from aqueous AgNO3 solutions. Electrochim. Acta 2005, 50, 5022–5031.

    Article  CAS  Google Scholar 

  39. Desai, R.; Mankad, V.; Gupta, S. K.; Jha, P. K. Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanosci. Nanotechnol. Lett. 2012, 4, 30–34.

    Article  CAS  Google Scholar 

  40. Tsuji, M.; Gomi, S.; Maeda, Y.; Matsunaga, M.; Hikino, S.; Uto, K.; Tsuji, T.; Kawazumi, H. Rapid Transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir 2012, 28, 8845–8861.

    Article  CAS  Google Scholar 

  41. Al-Ghamdi, H. S.; Mahmoud, W. E. One pot synthesis of multi-plasmonic shapes of silver nanoparticles. Mater. Lett. 2013, 105, 62–64.

    Article  CAS  Google Scholar 

  42. Ustarroz, J.; Kang, M.; Bullions, E.; Unwin, P. R. Impact and oxidation of single silver nanoparticles at electrode surfaces: One shot versus multiple events. Chem. Sci. 2017, 8, 1841–1853.

    Article  CAS  Google Scholar 

  43. Wonner, K.; Rurainsky, C.; Tschulik, K. Operando studies of the electrochemical dissolution of silver nanoparticles in nitrate solutions observed with hyperspectral dark-field microscopy. Front. Chem. 2020, 7, 912.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support from Ministerio de Ciencia e innovación (No. PID2020-113154RB-C21), Ministerio de Economía, Industria y Competitividad (No. CTQ2017-83935-R-AEI/FEDERUE), Junta de Castilla y León (No. BU297P18), and Ministerio de Ciencia, Innovación y Universidades (No. RED2018-102412-T). J. V. P-R acknowledges Spanish Ministry of Economy, Industry, and Competitiveness for the Juan de la Cierva postdoctoral (No. FJCI-2017-32458) and the University of Alcalá (No. CCG19/CC-071). S. H. thanks JCyL and European Social Fund for her predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan V. Perales-Rondon or Alvaro Colina.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, S., Perales-Rondon, J.V., Heras, A. et al. Simultaneous Raman and reflection UV/Vis absorption spectroelectrochemistry. Nano Res. 15, 5340–5346 (2022). https://doi.org/10.1007/s12274-022-4137-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4137-5

Keywords

Navigation