Skip to main content
Log in

Ag24Au cluster decorated mesoporous Co3O4 for highly selective and efficient photothermal CO2 hydrogenation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photothermal carbon dioxide hydrogenation represents a promising route to reduce the emission of greenhouse gas CO2 and produce value-added chemicals, but the selectivity and stability of photothermal catalysts need to be improved. Herein, we report the rational fabrication of well-defined Ag24Au cluster decorated highly ordered nanorod-like mesoporous Co3O4 (Ag24Au/meso-Co3O4) for highly efficient and selective CO2 hydrogenation. The orderly assembled meso-Co3O4 nanorods were prepared via a nanocasting method, offering large surface area and abundant active sites for CO2 adsorption and conversion. Moreover, the catalytic activity and selectivity were further improved by molecule-like Ag24Au cluster decoration and reaction temperature optimization. The Ag24Au/meso-Co3O4 composite catalyst exhibited an ultrahigh CH4 yield rate of 204 mmol·g−1·h−1 and a greatly improved CH4 selectivity of 82% for CO2 hydrogenation, significantly higher than those of pristine meso-Co3O4 catalyst. The mechanism of the photothermal catalytic performance improvement was verified by CO2 temperature-programmed desorption and time-resolved transient photoluminescence, revealing that CO2 molecules underwent a vigorous adsorption and rapid activation process over Ag24Au/meso-Co3O4. The hot electrons created by the localized surface plasmon resonance effect of Ag24Au clusters facilitated the charge transfer for subsequent multi-electron CO2 hydrogeneration processes, resulting in a significant increase in the productivity and selectivity for CO2-to-CH4 conversion. This work suggests that the rational coupling of well-defined metal atom clusters and ordered transition metal compound nanostructures could open a new avenue towards photo-induced green chemistry processes for efficient CO2 recycling and reutilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bünger, U.; Landinger, H.; Pschorr-Schoberer, E.; Schmidt, P.; Weindorf, W.; Jöhrens, J.; Lambrecht, U.; Naumann, K.; Lischke; A. Power-to-gas (PtG) in transport status quo and perspectives for development. 2011.

  2. Lehner, M.; Tichler, R.; Steinmüller, H.; Koppe, M. Power-to-Gas: Technology and Business Models; Springer: Cham, Switzerland, 2014.

    Google Scholar 

  3. Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation—From fundamentals to current projects. Fuel 2016, 166, 276–296.

    Article  Google Scholar 

  4. Jia, J.; Qian, C. X.; Dong, Y. C.; Li, Y. F.; Wang, H.; Ghoussoub, M.; Butler, K. T.; Walsh, A.; Ozin, G. A. Heterogeneous catalytic hydrogenation of CO2 by metal oxides: Defect engineering-perfecting imperfection. Chem. Soc. Rev. 2017, 46, 4631–4644.

    Article  CAS  Google Scholar 

  5. Titirici, M. M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 2010, 39, 103–116.

    Article  CAS  Google Scholar 

  6. Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278.

    Article  CAS  Google Scholar 

  7. Bonin, J.; Robert, M.; Routier, M. Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst. J. Am. Chem. Soc. 2014, 136, 16768–16771.

    Article  CAS  Google Scholar 

  8. Li, W. H.; Wang, H. Z.; Jiang, X.; Zhu, J.; Liu, Z. M.; Guo, X. W.; Song, C. S. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv. 2018, 8, 7651–7669.

    Article  CAS  Google Scholar 

  9. Tang, S. L.; Sun, J.; Hong, H.; Liu, Q. B. Solar fuel from photothermal catalytic reactions with spectrum-selectivity: A review. Front. Energy 2017, 11, 437–451.

    Article  Google Scholar 

  10. Jia, J.; O’Brien, P. G.; He, L.; Qiao, Q.; Fei, T.; Reyes, L. M.; Burrow, T. E.; Dong, Y. C.; Liao, K.; Varela, M. et al. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5. Adv. Sci. 2016, 3, 1600189.

    Article  Google Scholar 

  11. Jia, J.; Wang, H.; Lu, Z. L.; O’Brien, P. G.; Ghoussoub, M.; Duchesne, P.; Zheng, Z. Q.; Li, P. C.; Qiao, Q.; Wang, L. et al. Photothermal catalyst engineering: Hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sc i. 2017, 4, 1700252.

    Article  Google Scholar 

  12. Wang, L.; Ghoussoub, M.; Wang, H.; Shao, Y.; Sun, W.; Tountas, A. A.; Wood, T. E.; Li, H.; Loh, J. Y. Y.; Dong Y. C. et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2018, 2, 1369–1381.

    Article  CAS  Google Scholar 

  13. He, L.; Wood, T. E.; Wu, B.; Dong, Y. C.; Hoch, L. B.; Reyes, L. M.; Wang, D.; Kübel, C.; Qian, C. X.; Jia, J. et al. Spatial separation of charge carriers in In2O3−x(OH)y nanocrystal superstructures for enhanced gas-phase photocatalytic activity. ACS Nan o 2016, 10, 5578–5586.

    Article  CAS  Google Scholar 

  14. O’Brien, P. G.; Sandhel, A.; Wood, T. E.; Jelle, A. A.; Hoch, L. B.; Perovic, D. D.; Mims, C. A.; Ozin, A. G. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Adv. Sci. 2014, 1, 1400001.

    Article  Google Scholar 

  15. Wang, C. J.; Ranasingha, O.; Natesakhawat, S.; OhodnickiJr, P. R.; Andio, M.; Lewis, J. P.; Matranga, C. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale 2013, 5, 6968–6974.

    Article  CAS  Google Scholar 

  16. Hartadi, Y.; Widmann, D.; Behm, R. J. Methanol synthesis via CO2 hydrogenation over a Au/ZnO catalyst: An isotope labelling study on the role of CO in the reaction process. Phys. Chem. Chem. Phy s. 2016, 18, 10781–10791.

    Article  CAS  Google Scholar 

  17. Dreyer, J. A. H.; Li, P. X.; Zhang, L. H.; Beh, G. K.; Zhang, R. D.; Sit, P. H. L.; Teoh, W. Y. Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts. Appl. Cata l. B:Environ. 2017, 219, 715–726.

    Article  CAS  Google Scholar 

  18. Martin, N. M.; Velin, P.; Skoglundh, M.; Bauer, M.; Carlsson, P. A. Catalytic hydrogenation of CO2 to methane over supported Pd, Rh and Ni catalysts. Catal. Sci. Technol. 2017, 7, 1086–1094.

    Article  CAS  Google Scholar 

  19. Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H. F.; Jin, R. C. Experimental and computational investigation of Au25 clusters and CO2: A unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 2012, 134, 10237–10243.

    Article  CAS  Google Scholar 

  20. Liu, C.; Yang, B.; Tyo, E.; Seifert, S.; Debartolo, J.; Von Issendorff, B.; Zapol, P.; Vajda, S.; Curtiss, L. A. Carbon dioxide conversion to methanol over size-selected Cu4 clusters at low pressures. J. Am. Chem. Soc. 2015, 137, 8676–8679.

    Article  CAS  Google Scholar 

  21. Alfonso, D. R.; Kauffman, D.; Matranga, C. Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO. J. Chem. Phys. 2016, 144, 184705.

    Article  Google Scholar 

  22. Austin, N.; Zhao, S.; McKone, J. R.; Jin, R. C.; Mpourmpakis, G. Elucidating the active sites for CO2 electroreduction on ligand-protected Au25 nanoclueters. Catal. Sci. Tech nol. 2018, 8, 3795–3805.

    Article  CAS  Google Scholar 

  23. Gu, D.; Jia, C. J.; Weidenthaler, C.; Bongard, H. J.; Spliethoff, B.; Schmidt, W.; Schüth, F. Highly ordered mesoporous cobalt-containing oxides: Structure, catalytic properties, and active sites in oxidation of carbon monoxide. J. Am. Chem. S oc. 2015, 137, 11407–11418.

    Article  CAS  Google Scholar 

  24. Liu, Y. Y.; Chai, X. Q.; Cai, X.; Chen, M. Y.; Jin, R. C.; Ding, W. P.; Zhu, Y. Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C-C bond formation. Angew. Chem., Int. Ed. 2018, 57, 9775–9779.

    Article  CAS  Google Scholar 

  25. Varnavski, O.; Ispasoiu, R. G.; Balogh, L.; Tomalia, D.; Goodson III, T. Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites. J. Chem. Phys. 2001, 114, 1962–1965.

    Article  CAS  Google Scholar 

  26. Palummo, M.; Bernardi, M.; Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 2015, 15, 2794–2800.

    Article  CAS  Google Scholar 

  27. Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. P hys. Rev. B 2016, 93, 205423.

    Article  Google Scholar 

  28. Han, S. W.; Kim, Y.; Kim, K. Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. J. Colloid Interface Sci. 1998, 208, 272–278.

    Article  CAS  Google Scholar 

  29. Leppelt, R.; Schumacher, B.; Plzak, V.; Kinne, M.; Behm, R. J. Kinetics and mechanism of the low-temperature water-gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere. J. Catal. 2006, 244, 137–152.

    Article  CAS  Google Scholar 

  30. Borgschulte, A.; Gallanda, T N.; Probst, B.; Suter, R.; Callini, E.; Ferri, D.; Arroyo, Y.; Erni, R.; Geerlings, H.; Züttel, A. Sorption enhanced CO2 methanation. Phys. Chem. Chem. Phy s. 2013, 15, 9620–9625.

    Article  CAS  Google Scholar 

  31. Yoon, Y.; Hall, A. S.; Surendranath, Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem., Int. Ed. 2016, 55, 15282–15286.

    Article  CAS  Google Scholar 

  32. Zhang, A.; He, R.; Li, H. P.; Chen, Y. J.; Kong, T. Y.; Li, K.; Ju, H. X.; Zhu, J. F.; Zhu, W. G.; Zeng, J. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. A ngew. Chem., Int. Ed. 2018, 57, 10954–10958.

    Article  CAS  Google Scholar 

  33. Pan, Q. S.; Peng, J. X.; Sun, T. J.; Wang, S.; Wang, S. D. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites. Catal. Commun. 2014, 45, 74–78.

    Article  Google Scholar 

  34. Yang, Z. Y.; Moure, V. R.; Dean, D. R.; Seefeldt, L. C. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc. Natl. Aca d. Sci. USA 2012, 109, 19644–19648.

    Article  CAS  Google Scholar 

  35. He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.

    Article  CAS  Google Scholar 

  36. Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

    Article  CAS  Google Scholar 

  37. Jiang, H. L.; He, Q.; Li, X. Y.; Su, X. Z.; Zhang, Y. K.; Chen, S. M.; Zhang, S.; Zhang, G. Z.; Jiang, J.; Luo, Y. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 2019, 11, 1805127.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the funding supports from the National Key Research & Development Program of China (No. 2017YFA0208200), the National Natural Science Foundation of China (Nos. 22022505 and 21872069), the Fundamental Research Funds for the Central Universities (No. 0205-14380266), and the 2021 Suzhou Gusu Leading Talents of Science and Technology Innovation and Entrepreneurship in Wujiang District.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Jin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Liu, X., Hu, Y. et al. Ag24Au cluster decorated mesoporous Co3O4 for highly selective and efficient photothermal CO2 hydrogenation. Nano Res. 15, 4965–4972 (2022). https://doi.org/10.1007/s12274-022-4133-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4133-9

Keywords

Navigation