Skip to main content
Log in

Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic nitrogen reduction reaction (NRR) is a sustainable approach for NH3 production with low energy consumption. However, competing hydrogen reduction reaction (HER) in aqueous solution results in low NH3 production and Faraday efficiency (FE). Here, MoS2 nanostructures with a hydrophobic surface are synthesized by alkyl thiols modification. Aerophilic and hydrophobic surface facilitates an efficient three-phase contact of N2, H2O, and catalyst. Thus, localized concentrated N2 molecules can overcome the mass transfer limitation of N2 and depress the HER due to lowering the proton contacts. Although the active-sites decrease with the increase of the alkyl chain since the thiol may cover the active site, the optimized electrocatalyst achieves NH3 yield of 12.86 × 10−11 mol·cm−2·s−1 at −0.25 V and 22.23% FE, which are 4.3 and 24 times higher than those of MoS2-CP electrocatalyst, respectively. The increased catalytic performance is attributed to the high N2 adsorption and depressed HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

    Article  CAS  Google Scholar 

  2. Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 7, 636–639.

    Article  Google Scholar 

  3. Wang, C.; Gu, L. L.; Qiu, S. Y.; Gao, J.; Zhang, Y. C.; Wang, K. X.; Zou, J. J.; Zuo, P. J.; Zhu, X. D. Modulating CoFe2O4 nanocube with oxygen vacancy and carbon wrapper towards enhanced electrocatalytic nitrogen reduction to ammonia. Appl. Catal. B Environ. 2021, 297, 120452.

    Article  CAS  Google Scholar 

  4. Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456.

    Article  CAS  Google Scholar 

  5. Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

    Article  CAS  Google Scholar 

  6. Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

    Article  Google Scholar 

  7. Liu, P. Y.; Shi, K.; Chen, W. Z.; Gao, R.; Liu, Z. L.; Hao, H. G.; Wang, Y. Q. Enhanced electrocatalytic nitrogen reduction reaction performance by interfacial engineering of MOF-based sulfides FeNi2S4/NiS hetero-interface. Appl. Catal. B Environ. 2021, 287, 119956.

    Article  CAS  Google Scholar 

  8. Xiong, W.; Guo, Z.; Zhao, S. J.; Wang, Q.; Xu, Q. Y.; Wang, X. W. Facile, cost-effective plasma synthesis of self-supportive FeSx on Fe foam for efficient electrochemical reduction of N2 under ambient conditions. J. Mater. Chem. A 2019, 7, 19977–19983.

    Article  CAS  Google Scholar 

  9. Wang, Y. C.; Ren, B. Y.; Ou, J. Z.; Xu, K.; Yang, C. H.; Li, Y. X.; Zhang, H. J. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Sci. Bull. 2021, 66, 1228–1252.

    Article  CAS  Google Scholar 

  10. Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

    Article  CAS  Google Scholar 

  11. Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.

    Article  CAS  Google Scholar 

  12. Yang, D. S.; Chen, T.; Wang, Z. J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967–18971.

    Article  CAS  Google Scholar 

  13. Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

    Article  Google Scholar 

  14. Lv, C. D.; Qian, Y. M.; Yan, C. S.; Ding, Y.; Liu, Y. Y.; Chen, G.; Yu, G. H. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 130, 10403–10407.

    Article  Google Scholar 

  15. Yuan, L. P.; Wu, Z. Y.; Jiang, W. J.; Tang, T.; Niu, S.; Hu, J. S. Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376–1382.

    Article  CAS  Google Scholar 

  16. Lü, F.; Zhao, S. Z.; Guo, R. J.; He, J.; Peng, X. Y.; Bao, H. H.; Fu, J. T.; Han, L. L.; Qi, G. C.; Luo, J. et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420–427.

    Article  Google Scholar 

  17. Yang, X. X.; Sun, S.; Meng, L.; Li, K.; Mukherjee, S.; Chen, X. Y.; Lv, J. Q.; Liang, S.; Zang, H. Y.; Yan, L. K. et al. Molecular single iron site catalysts for electrochemical nitrogen fixation under ambient conditions. Appl. Catal. B Environ. 2021, 285, 119794.

    Article  CAS  Google Scholar 

  18. Wang, X. Q.; Wang, W. Y.; Qiao, M.; Wu, G.; Chen, W. X.; Yuan, T. W.; Xu, Q.; Chen, M.; Zhang, Y.; Wang, X. et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci. Bull. 2018, 63, 1246–1253.

    Article  CAS  Google Scholar 

  19. Li, J.; Chen, S.; Quan, F. J.; Zhan, G. M.; Jia, F. L.; Ai, Z. H.; Zhang, L. Z. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem 2020, 6, 885–901.

    Article  CAS  Google Scholar 

  20. Lai, F. L.; Zong, W.; He, G. J.; Xu, Y.; Huang, H. W.; Weng, B.; Rao, D. W.; Martens, J. A.; Hofkens, J.; Parkin, I. P. et al. N2 electroreduction to NH3 by selenium vacancy-rich ReSe2 catalysis at an abrupt interface. Angew. Chem., Int. Ed. 2020, 59, 13320–13327.

    Article  CAS  Google Scholar 

  21. Chen, G. F.; Ren, S. Y.; Zhang, L. L.; Cheng, H.; Luo, Y. R.; Zhu, K. H.; Ding, L. X.; Wang, H. H. Advances in electrocatalytic N2 reduction-strategies to tackle the selectivity challenge. Small Methods 2019, 3, 1800337.

    Article  Google Scholar 

  22. Zhang, L. F.; Zhao, W. H.; Zhang, W. H.; Chen, J.; Hu, Z. P. Gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181–1186.

    Article  CAS  Google Scholar 

  23. Deng, Y.; Xiao, Z. Y.; Wang, Z. C.; Lai, J. P.; Liu, X. B.; Zhang, D.; Han, Y.; Li, S. X.; Sun, W.; Wang, L. The rational adjusting of proton-feeding by pt-doped FeP/C hollow nanorod for promoting nitrogen reduction kinetics. Appl. Catal. B Environ. 2021, 291, 120047.

    Article  CAS  Google Scholar 

  24. Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180.

    Article  CAS  Google Scholar 

  25. Guo, X. X.; Du, H. T.; Qu, F. L.; Li, J. H. Recent progress in electrocatalytic nitrogen reduction. J. Mater. Chem. A 2019, 7, 3531–3543.

    Article  CAS  Google Scholar 

  26. Liu, S. S.; Qian, T.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Wang, C.; Yan, C. L. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.

    Article  CAS  Google Scholar 

  27. Kang, C. S. M.; Zhang, X. Y.; MacFarlane, D. R. Synthesis and physicochemical properties of fluorinated ionic liquids with high nitrogen gas solubility. J. Phys. Chem. C 2018, 122, 24550–24558.

    Article  CAS  Google Scholar 

  28. Li, A.; Cao, Q.; Zhou, G. Y.; Schmidt, B. V. K. J.; Zhu, W. J.; Yuan, X. T.; Huo, H. L.; Gong, J. L.; Antonietti, M. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angew. Chem., Int. Ed. 2019, 58, 14549–14555.

    Article  CAS  Google Scholar 

  29. Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

    Article  Google Scholar 

  30. Li, X. H.; Ren, X.; Liu, X. J.; Zhao, J. X.; Sun, X.; Zhang, Y.; Kuang, X.; Yan, T.; Wei, Q.; Wu, D. A MoS2 nanosheet-reduced graphene oxide hybrid: An efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 2524–2528.

    Article  CAS  Google Scholar 

  31. Zhao, J.; Zhao, J. X.; Cai, Q. H. Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 2018, 20, 9248–9255.

    Article  CAS  Google Scholar 

  32. Wei, Y. S.; Wang, Y.; Wei, L.; Zhao, X. S.; Zhou, X. Y.; Liu, H. T. Highly efficient and reactivated electrocatalyst of ruthenium electrodeposited on nickel foam for hydrogen evolution from NaBH4 alkaline solution. Int. J. Hydrogen Energy 2018, 43, 592–600.

    Article  CAS  Google Scholar 

  33. Liu, B. C.; Li, H.; Cao, B.; Jiang, J. N; Gao, R.; Zhang, J. Few layered N, P dual-doped carbon-encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: An ultrahigh active and durable 3D self-supported integrated electrode for hydrogen evolution reaction in a wide pH range. Adv. Funct. Mater. 2018, 28, 1801527.

    Article  Google Scholar 

  34. Chen, J. W.; Zhang, C. Y.; Huang, M.; Zhang, J.; Zhang, J.; Liu, H. G.; Wang, G.; Wang, R. L. The activation of porous atomic layered MoS2 basal-plane to induce adjacent Mo atom pairs promoting high efficiency electrochemical N2 fixation. Appl. Catal. B Environ. 2021, 285, 119810.

    Article  CAS  Google Scholar 

  35. Devi, N. R.; Sasidharan, M.; Sundramoorthy, A. K. Gold nanoparticles-thiol-functionalized reduced graphene oxide coated electrochemical sensor system for selective detection of mercury ion. J. Electrochem. Soc. 2018, 165, B3046–B3053.

    Article  CAS  Google Scholar 

  36. Ahmed, M. I.; Liu, C. W.; Zhao, Y.; Ren, W. H.; Chen, X. J.; Chen, S.; Zhao, C. Metal-sulfur linkages achieved by organic tethering of ruthenium nanocrystals for enhanced electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 21465–21469.

    Article  CAS  Google Scholar 

  37. Li, Y. J.; Zhang, H. C.; Han, N. N.; Kuang, Y.; Liu, J. F.; Liu, W.; Duan, H. H.; Sun, X. M. Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Res. 2019, 12, 177–182.

    Article  CAS  Google Scholar 

  38. Li, X. H.; Li, T. S.; Ma, Y.; Wei, Q.; Qiu, W. B.; Guo, H. R.; Shi, X. F.; Zhang, P.; Asiri, A. M.; Chen, L. et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.

    Article  Google Scholar 

  39. Du, C.; Gao, Y. J.; Wang, J. G.; Chen, W. Achieving 59% faradaic efficiency of the N2 electroreduction reaction in an aqueous Zn-N2 battery by facilely regulating the surface mass transport on metallic copper. Chem. Commun. 2019, 55, 12801–12804.

    Article  CAS  Google Scholar 

  40. Choi, J.; Suryanto, B. H. R.; Wang, D. B.; Du, H. L.; Hodgetts, R. Y.; Vallana, F. M. F.; MacFarlane, D. R.; Simonov, A. N. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 2020, 11, 5546.

    Article  CAS  Google Scholar 

  41. Shahid, U. B.; Siddharth, K.; Shao, M. Electrifying the nitrogen cycle: An electrochemical endeavor. Curr. Opin. Electrochem. 2021, 30, 100790.

    Article  CAS  Google Scholar 

  42. Niu, L. J.; Wang, D.; Xu, K.; Hao, W. C.; An, L.; Kang, Z. H.; Sun, Z. C. Tuning the performance of nitrogen reduction reaction by balancing the reactivity of N2 and the desorption of NH3. Nano Res. 2021, 14, 4093–4099.

    Article  CAS  Google Scholar 

  43. Zheng, J. Y.; Lyu, Y. H.; Qiao, M.; Wang, R. L.; Zhou, Y. Y.; Li, H.; Chen, C.; Li, Y. F.; Zhou, H. J.; Jiang, S. P. et al. Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency. Chem 2019, 5, 617–633.

    Article  CAS  Google Scholar 

  44. Wang, C. R.; Wang, S.; Lv, J. G.; Ma, Y. X.; Wang, Y. Q.; Zhou, G. L.; Chen, M. S.; Zhao, M.; Chen, X. S.; Yang, L. Co doped MoS2 as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions. Int. J. Electrochem. Sci. 2019, 14, 9805–9814.

    Article  CAS  Google Scholar 

  45. Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3592-8.

  46. Gao, X.; An, L.; Qu, D.; Jiang, W. S.; Chai, Y. X.; Sun, S. R.; Liu, X. Y.; Sun, Z. C. Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst. Sci. Bull. 2019, 64, 918–925.

    Article  CAS  Google Scholar 

  47. Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 2019, 18, 697–701.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Beijing Municipal High Level Innovative Team Building Program (No. IDHT20180504), Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910005017), the National Natural Science Foundation of China (Nos. 51801006, 21805004, 21872001, and 21936001), Beijing Natural Science Foundation (No. 2192005), and Beijing Municipal Science and Natural Science Fund Project (Nos. KM201910005016 and 2017000020124G085). The authors would like to thank the Shiyanjia Lab (https://www.shiyanjia.com) for the XPS and liquid contact angle tests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li An or Zaicheng Sun.

Electronic Supplementary Material

Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction

Supplementary material, approximately 3.93 MB.

Supplementary material, approximately 4.82 MB.

Supplementary material, approximately 5.17 MB.

Supplementary material, approximately 1.18 MB.

Supplementary material, approximately 611 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, L., Liu, Z., Liu, G. et al. Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction. Nano Res. 15, 3886–3893 (2022). https://doi.org/10.1007/s12274-021-4015-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4015-6

Keywords

Navigation