Skip to main content
Log in

Cobalt doped Fe-Mn@CNTs catalysts with highly stability for low-temperature selective catalytic reduction of NOx

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this paper, we report the fabrication of cobalt-doped de-NOx catalyst by pyrolyzing an analogous metal-organic framework-74 (MOF-74) containing Fe & Mn. The resulted catalyst exhibits distinctive microstructures of manganese, cobalt, and iron immobilized on N-doped carbon nanotubes (CNTs). It is found through experiments that the trimetallic catalyst Fe2Mn1Co0.5/CNTs-50 has the best NH3-selective catalytic reduction (SCR) performance. The Fe2Mn1Co0.5/CNTs-50 exhibited excellent water and sulfur resistance and good stability under the harsh gas environment of 250 °C and/or 170 °C, NO = NH3 = 1,000 ppm, 8 vol.% O2, 20 vol.% H2O, 1,000 ppm SO2, and gas hourly space velocity (GHSV) = 75,000 h−1. The de-NOx conversion was maintained about 55% and 25% after 192 h. The water and sulfur resistance performance were much higher than commercial vanadium series catalyst. The highly water and sulfur resistance performance may be attributed to the unique core-shell microstructure and the synergistic effect of manganese, cobalt, and iron which helps reduce the formation for byproducts (NH4HSO4). This study may promote to explore the development of a high stability catalyst for low-temperature selective catalytic reduction of NOx with NH3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu, M. F.; Li, C. T.; Lu, P.; Qu, L.; Zhang, M. Y.; Zhou, Y.; Yu, M. G.; Fang, Y. A review on selective catalytic reduction of NOx by supported catalysts at 100–300 °C—Catalysts, mechanism, kinetics. Catal. Sci. Technol. 2014, 4, 14–25.

    Article  CAS  Google Scholar 

  2. Qi, G.; Yang, R. T. Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. J. Phys. Chem. B 2004, 108, 15738–15747.

    Article  CAS  Google Scholar 

  3. Beeckman, J. W.; Hegedus, L. L. Design of monolith catalysts for power plant nitrogen oxide (Nox) emission control. Ind. Eng. Chem. Res. 1991, 30, 969–978.

    Article  CAS  Google Scholar 

  4. Nicosia, D.; Czekaj, I.; Kröcher, O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution: Part II. Characterization study of the effect of alkali and alkaline earth metals. Appl. Catal. B:Environ. 2008, 77, 228–236.

    Article  CAS  Google Scholar 

  5. Boudali, L. K.; Ghorbel, A.; Grange, P. Characterization and reactivity of WO3-V2O5 supported on sulfated titanium pillared clay catalysts for the SCR-NO reaction. Comp. Rend. Chim. 2009, 12, 779–786.

    Article  Google Scholar 

  6. Macleod, N.; Lambert, R. M. Lean NOx reduction with CO + H2 mixtures over Pt/Al2O3 and Pd/Al2O3 catalysts. Appl. Catal. B: Environ. 2002, 35, 269–279.

    Article  CAS  Google Scholar 

  7. Qi, G.; Yang, R. T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Appl. Catal. B:Environ. 2003, 44, 217–225.

    Article  CAS  Google Scholar 

  8. Chang, H. Z.; Li, J. H.; Chen, X. Y.; Ma, L.; Yang, S. J.; Schwank, J. W.; Hao, J. M. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2. Catal. Commun. 2012, 27, 54–57.

    Article  CAS  Google Scholar 

  9. Si, Z. C.; Weng, D.; Wu, X. D.; Ma, Z. R.; Ma, J.; Ran, R. Lattice oxygen mobility and acidity improvements of NiO-CeO2-ZrO2 catalyst by sulfation for NOx reduction by ammonia. Catal. Today 2013, 201, 122–130.

    Article  CAS  Google Scholar 

  10. Liu, Z. M.; Zhu, J. Z.; Zhang, S. X.; Ma, L. L.; Woo, S. I. Selective catalytic reduction of NOx by NH3 over MoO3-promoted CeO2/TiO2 catalyst. Catal. Commun. 2014, 46, 90–93.

    Article  CAS  Google Scholar 

  11. Liu, Z. M.; Liu, Y. X.; Li, Y.; Su, H.; Ma, L. L. WO3 promoted Mn-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2016, 283, 1044–1050.

    Article  CAS  Google Scholar 

  12. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Article  Google Scholar 

  13. Hong, W. Y.; Perera, S. P.; Burrows, A. D. Manufacturing of metal-organic framework monoliths and their application in CO2 adsorption. Micropor. Mesopor. Mater. 2015, 214, 149–155.

    Article  CAS  Google Scholar 

  14. Yao, Y. N.; Gao, Z. H.; Lv, Y. C.; Lin, X. Q.; Liu, Y. Y.; Du, Y. X.; Hu, F. Q.; Zhao, Y. S. Heteroepitaxial growth of multiblock Ln-MOF microrods for photonic barcodes. Angew. Chem., Int. Ed. 2019, 58, 13803–13807.

    Article  CAS  Google Scholar 

  15. Liu, N.; Tian, A. Q.; Ren, Z. L.; Wang, L. Efficient synthesis of sulfonyl diphenylsulfides catalyzed via Cu-MOF of PCN-6. ChemistrySelect 2019, 4, 10972–10974.

    Article  CAS  Google Scholar 

  16. He, H. J.; Li, H. J.; Cui, Y. J.; Qian, G. D. MOF-based organic microlasers. Adv. Opt. Mater. 2019, 7, 1900077.

    Article  Google Scholar 

  17. Davydovskaya, P.; Pentyala, V.; Yurchenko, O.; Hussein, L.; Pohle, R.; Urban, G. A. Work function based sensing of alkanes and alcohols with benzene tricarboxylate linked metal organic frameworks. Sensor. Actuat. B:Chem. 2014, 193, 911–917.

    Article  CAS  Google Scholar 

  18. Ai, L. H.; Zhang, C. H.; Li, L. L.; Jiang, J. Iron terephthalate metal-organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl. Catal. B:Environ. 2014, 148–149, 191–200.

    Article  Google Scholar 

  19. Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. J.; Jin, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

    Article  Google Scholar 

  20. Chen, Z. J.; Chen, J. Y.; Li, Y. W. Metal-organic-framework-based catalysts for hydrogenation reactions. Chin. J. Catal. 2017, 88, 1108–1126.

    Article  Google Scholar 

  21. Cui, W. G.; Zhang, G. Y.; Hu, T. L.; Bu, X. H. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordin. Chem. Rev. 2019, 387, 79–120.

    Article  CAS  Google Scholar 

  22. Han, J.; Lee, M. S.; Thallapally, P. K.; Kim, M.; Jeong, N. Identification of reaction sites on metal-organic framework-based asymmetric catalysts for carbonyl-ene reactions. ACS Catal. 2019, 9, 3969–3977.

    Article  CAS  Google Scholar 

  23. Kaur, H.; Venkateswarulu, M.; Kumar, S.; Krishnan, V.; Koner, R. R. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation. Dalton Trans. 2018, 47, 1488–1497.

    Article  CAS  Google Scholar 

  24. Zhuo, H. Y.; Yu, X. H.; Yu, Q.; Xiao, H.; Zhang, X.; Li, J. Selective hydrogenation of acetylene on graphene-supported non-noble metal single-atom catalysts. Sci. China Mater. 2020, 63, 1741–1749.

    Article  CAS  Google Scholar 

  25. Huo, S. H.; Yan, X. P. Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 2012, 22, 7449–7455.

    Article  CAS  Google Scholar 

  26. Dong, Z.; Liu, G. L.; Zhou, S. C.; Zhang, Y. Y.; Zhang, W. L.; Fan, A. X.; Zhang, X.; Dai, X. P. Restructured Fe-Mn alloys encapsulated by N-doped carbon nanotube catalysts derived from bimetallic MOF for enhanced oxygen reduction reaction. ChemCatChem 2018, 10, 5475–5486.

    Article  CAS  Google Scholar 

  27. Wu, R. B.; Qian, X. K.; Zhou, K.; Wei, J.; Lou, J.; Ajayan, P. M. Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 2014, 8, 6297–6303.

    Article  CAS  Google Scholar 

  28. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  29. Chowdhury, P.; Mekala, S.; Dreisbach, F.; Gumma, S. Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity. Micropor. Mesopor. Mater. 2012, 152, 246–252.

    Article  CAS  Google Scholar 

  30. Dathe, H.; Peringer, E.; Roberts, V.; Jentys, A.; Lercher, J. A. Metal organic frameworks based on Cu2+ and benzene-1,3,5-tricarboxylate as host for SO2 trapping agents. Comp. Rend. Chim. 2005, 8, 753–763.

    Article  CAS  Google Scholar 

  31. Jiang, H. X.; Wang, Q. Y.; Wang, H. Q.; Chen, Y. F.; Zhang, M. H. Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process. Catal. Commun. 2016, 80, 24–27.

    Article  CAS  Google Scholar 

  32. Zhang, D. S.; Zhang, L.; Fang, C.; Gao, R. H.; Qian, Y. L.; Shi, L. Y.; Zhang, J. P. MnOx-CeOx/CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3. RSC Adv. 2013, 3, 8811–8819.

    Article  CAS  Google Scholar 

  33. Fang, C.; Zhang, D. S.; Shi, L. Y.; Gao, R. H.; Li, H. R.; Ye, L. P.; Zhang, J. P. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3. Catal. Sci. Technol. 2013, 3, 803–811.

    Article  CAS  Google Scholar 

  34. Li, Q.; Yang, H. S.; Ma, Z. X.; Zhang, X. B. Selective catalytic reduction of NO with NH3 over CuOx-carbonaceous materials. Catal. Commun. 2012, 17, 8–12.

    Article  CAS  Google Scholar 

  35. Bai, S. L.; Zhao, J. H.; Wang, L.; Zhu, Z. P. SO2-promoted reduction of NO with NH3 over vanadium molecularly anchored on the surface of carbon nanotubes. Catal. Today 2010, 158, 393–400.

    Article  CAS  Google Scholar 

  36. Li, J. H.; Chang, H. Z.; Ma, L.; Hao, J. M.; Yang, R. T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts —A review. Catal. Today 2011, 175, 147–156.

    Article  CAS  Google Scholar 

  37. Zhou, W.; Yildirim, T. Nature and tunability of enhanced hydrogen binding in metal-organic frameworks with exposed transition metal sites. J. Phys. Chem. C 2008, 112, 8132–8135.

    Article  CAS  Google Scholar 

  38. Deng, J.; Ren, P. J.; Deng, D. H.; Yu, L.; Yang, F.; Bao, X. H. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 1919–1923.

    Article  CAS  Google Scholar 

  39. Tabassum, H.; Mahmood, A.; Zhu, B. J.; Liang, Z. B.; Zhong, R. Q.; Guo, S. J.; Zou, R. Q. Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy Environ. Sci. 2019, 12, 2924–2956.

    Article  CAS  Google Scholar 

  40. Kim, N. S.; Lee, Y. T.; Park, J.; Han, J. B.; Choi, Y. S.; Choi, S. Y.; Choo, J.; Lee, G. H. Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines. J. Phys. Chem. B 2003, 107, 9249–9255.

    Article  CAS  Google Scholar 

  41. Coey, J. M. D. New permanent magnets; manganese compounds. J. Phys.:Condens. Matter. 2014, 26, 064211.

    CAS  Google Scholar 

  42. Qiao, P. S.; Xu, S. D.; Zhang, D. J.; Li, R. H.; Zou, S. H.; Liu, J. J.; Yi, W. Z.; Li, J. X.; Fan, J. Sub-10 nm Au-Pt-Pd alloy trimetallic nanoparticles with a high oxidation-resistant property as efficient and durable VOC oxidation catalysts. Chem. Commun. 2014, 50, 11713–11716.

    Article  CAS  Google Scholar 

  43. Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221.

    Article  CAS  Google Scholar 

  44. Feng, X. P.; Mi, W. B.; Bai, H. L. Investigation of structure and magnetic properties of the as-deposited and post-annealed iron nitride films by reactive facing-target sputtering. Appl. Surf. Sci. 2011, 257, 7320–7325.

    Article  CAS  Google Scholar 

  45. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

    Article  CAS  Google Scholar 

  46. Ma, X. X.; He, X. Q. Electronically tailoring 3D flower-like graphene via alumina doping and incorporating Co as an efficient oxygen electrode catalyst in both alkaline and acid media. J. Power Sources 2017, 353, 28–39.

    Article  CAS  Google Scholar 

  47. Guo, K.; Fan, G. F.; Gu, D.; Yu, S. H.; Ma, K. L.; Liu, A. N.; Tan, W.; Wang, J. M.; Du, X. Z.; Zou, W. X. et al. Pore size expansion accelerates ammonium bisulfate decomposition for improved sulfur resistance in low-temperature NH3-SCR. ACS Appl. Mater. Interfaces 2019, 11, 4900–4907.

    Article  CAS  Google Scholar 

  48. Wu, X. D.; Si, Z. C.; Li, G.; Weng, D.; Ma, Z. R. Effects of cerium and vanadium on the activity and selectivity of MnOx-TiO2 catalyst for low-temperature NH3-SCR. J. Rare Earths 2011, 29, 64–68.

    Article  CAS  Google Scholar 

  49. Jiang, H. X.; Wang, Q. Y.; Wang, H. Q.; Chen, Y. F.; Zhang, M. H. MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3. ACS Appl. Mater. Interfaces 2016, 8, 26817–26826.

    Article  CAS  Google Scholar 

  50. Huang, B. C.; Huang, R.; Jin, D. J.; Ye, D. Q. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides. Catal. Today 2007, 126, 279–283.

    Article  CAS  Google Scholar 

  51. Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.

    Article  CAS  Google Scholar 

  52. Su, D. Q.; Huang, M.; Zhang, J. H.; Guo, X. M.; Chen, J. L.; Xue, Y. C.; Yuan, A. H.; Kong, Q. H. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862–2868.

    Article  CAS  Google Scholar 

  53. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  54. Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

    Article  CAS  Google Scholar 

  55. Zhang, Y.; Xie, Y.; Zhou, Y. T.; Wang, X. W.; Pan, K. Well dispersed Fe2N nanoparticles on surface of nitrogen-doped reduced graphite oxide for highly efficient electrochemical hydrogen evolution. J. Mater. Res. 2017, 32, 1770–1776.

    Article  CAS  Google Scholar 

  56. Bhargava, G.; Gouzman, I.; Chun, C. M.; Ramanarayanan, T. A.; Bernasek, S. L. Characterization of the “native” surface thin film on pure polycrystalline iron: A high resolution XPS and TEM study. Appl. Surf. Sci. 2007, 253, 4322–4329.

    Article  CAS  Google Scholar 

  57. Wu, Q. L.; Jiang, M. L.; Zhang, X. F.; Cai, J. N.; Lin, S. A novel octahedral MnO/RGO composite prepared by thermal decomposition as a noble-metal free electrocatalyst for ORR. J. Mater. Sci. 2017, 52, 6656–6669.

    Article  CAS  Google Scholar 

  58. Kushwaha, S.; Karthikayini, M. P.; Wang, G. X.; Mandal, S.; Bhobe, P. A.; Ramani, V. K.; Priolkar, K. R.; Ramanujam, K. A non-platinum counter electrode, MnNx/C, for dye-sensitized solar cell applications. Appl. Surf. Sci. 2017, 418, 179–185.

    Article  CAS  Google Scholar 

  59. Jin, R. B.; Liu, Y.; Wang, Y.; Cen, W. L.; Wu, Z. B.; Wang, H. Q.; Weng, X. L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Appl. Catal. B:Environ. 2014, 148-149, 582–588.

    Article  Google Scholar 

  60. Chen, S. N.; Yan, Q. H.; Zhang, C.; Wang, Q. A novel highly active and sulfur resistant catalyst from Mn-Fe-Al layered double hydroxide for low temperature NH3-SCR. Catal. Today 2019, 327, 81–89.

    Article  CAS  Google Scholar 

  61. Liu, J.; Guo, R. T.; Li, M. Y.; Sun, P.; Liu, S. M.; Pan, W. G.; Liu, S. W.; Sun, X. Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study. Fuel 2018, 223, 385–393.

    Article  CAS  Google Scholar 

  62. Sun, C. Z.; Liu, H.; Chen, W.; Chen, D. Z.; Yu, S. H.; Liu, A. N.; Dong, L.; Feng, S. Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction. Chem. Eng. J. 2018, 347, 27–40.

    Article  CAS  Google Scholar 

  63. Jiang, L. J.; Liu, Q. C.; Ran, G. J.; Kong, M.; Ren, S.; Yang, J.; Li, J. L. V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO. Chem. Eng. J. 2019, 370, 810–821.

    Article  CAS  Google Scholar 

  64. Cai, S. X.; Hu, H.; Li, H. R.; Shi, L. Y.; Zhang, D. S. Design of multi-shell Fe2O3@MnOx@CNTs for the selective catalytic reduction of NO with NH3: Improvement of catalytic activity and SO2 tolerance. Nanoscale 2016, 8, 3588–3598.

    Article  CAS  Google Scholar 

  65. Chen, Y. X.; Li, C.; Chen, J. X.; Tang, X. F. Self-prevention of well-defined-facet Fe2O3/MoO3 against deposition of ammonium bisulfate in low-temperature NH3-SCR. Environ. Sci. Technol. 2018, 52, 11796–11802.

    CAS  Google Scholar 

  66. Gao, F. Y.; Tang, X. L.; Yi, H. H.; Li, J. Y.; Zhao, S. Z.; Wang, J. G.; Chu, C.; Li, C. L. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chem. Eng. J. 2017, 317, 20–31.

    Article  CAS  Google Scholar 

  67. Zhang, X.; Guo, Y. C.; Zhang, Z. C.; Gao, J. S.; Xu, C. M. High performance of carbon nanotubes confining gold nanoparticles for selective hydrogenation of 1, 3-butadiene and cinnamaldehyde. J. Catal. 2012, 292, 213–226.

    Article  CAS  Google Scholar 

  68. Balram, A.; Santhanagopalan, S.; Hao, B. Y.; Yap, Y. K.; Meng, D. S. Electrophoretically-deposited metal-decorated CNT nanoforests with high thermal/electric conductivity and wettability tunable from hydrophilic to superhydrophobic. Adv. Funct. Mater. 2016, 26, 2571–2579.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 21573286) and the Key scientific and technological innovation projects in Shandong Province (No. 2019JZZY010343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zhang, T., Sun, H. et al. Cobalt doped Fe-Mn@CNTs catalysts with highly stability for low-temperature selective catalytic reduction of NOx. Nano Res. 15, 3001–3009 (2022). https://doi.org/10.1007/s12274-021-3932-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3932-8

Keywords

Navigation