Skip to main content
Log in

Efficient passivation of DY center in CH3NH3PbBr3 by chlorine: Quantum molecular dynamics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

MAPbBr3 (MA = CH3NH3+) doping with bismuth increases electric conductivity, charge carrier density and photostability, reduces toxicity, and expands light absorption. However, Bi doping shortens excited-state lifetimes due to formation of DY charge recombination centers. Using nonadiabatic molecular dynamics and time-domain density functional theory, we demonstrate that the DY center forms a deep, highly localized hole trap, which accelerates nonradiative relaxation ten-fold and is responsible for 90% of carrier losses. Hole trapping occurs by coupling between the valence band and the trap state, facilitated by the Br atoms surrounding the Bi dopant. Passivation of the DY center with chlorines heals the local geometry distortion, eliminates the trap state, and makes the carrier lifetimes longer than even in pristine MAPbBr3. The decreased charge recombination arises from reduced nonadiabatic coupling and shortened coherence time, due to diminished electron-hole overlap around the passivated defect. Our study demonstrates accelerated nonradiative recombination in Bi-doped MAPbBr3, suggests a strategy for defect passivation and reduction of nonradiative energy losses, and provides atomistic insights into unusual defect properties of metal halide perovskites needed for rational design of high-performance perovskite solar cells and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin, W. J.; Shi, T. T.; Yan, Y. F. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658.

    Article  CAS  Google Scholar 

  2. Chen, H.; Wang, H.; Wu, J.; Wang, F.; Zhang, T.; Wang, Y. F.; Liu, D. T.; Li, S. B.; Penty, R. V.; White, I. H. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 2020, 13, 1997–2018.

    Article  CAS  Google Scholar 

  3. Saparov, B.; Mitzi, D. B. Organic-inorganic perovskites: Structural versatility for functional materials design. Chem. Rev. 2016, 116, 4558–4596.

    Article  CAS  Google Scholar 

  4. Bai, S.; Wu, Z. W.; Wu, X. J.; Jin, Y. Z.; Zhao, N.; Chen, Z. H.; Mei, Q. Q.; Wang, X.; Ye, Z. Z.; Song, T. et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014, 7, 1749–1758.

    Article  CAS  Google Scholar 

  5. Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

    Article  CAS  Google Scholar 

  6. Luo, S. Q.; Daoud, W. A. Recent progress in organic-inorganic halide perovskite solar cells: Mechanisms and material design. J. Mater. Chem. A 2015, 3, 8992–9010.

    Article  CAS  Google Scholar 

  7. Qiu, X. C.; Liu, Y.; Li, W. W.; Hu, Y. Y. Traps in Metal Halide Perovskites: Characterization and Passivation. Nanoscale 2020, 12, 22425–22451.

    Article  CAS  Google Scholar 

  8. Yin, W. J.; Yang, J. H.; Kang, J.; Yan, Y. F.; Wei, S. H. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A 2015, 3, 8926–8942.

    Article  CAS  Google Scholar 

  9. Xie, Y. M.; Ma, C. Q.; Xu, X. W.; Li, M. L.; Ma, Y. H.; Wang, J.; Chandran, H. T.; Lee, C. S.; Tsang, S. W. Revealing the crystallization process and realizing uniform 1.8 eV MA-based wide-bandgap mixed-halide perovskites via solution engineering. Nano Res. 2019, 12, 1033–1039.

    Article  CAS  Google Scholar 

  10. Turren-Cruz, S. H.; Saliba, M.; Mayer, M. T.; Juárez-Santiesteban, H.; Mathew, X.; Nienhaus, L.; Tress, W.; Erodici, M. P.; Sher, M. J.; Bawendi, M. G. et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ. Sci. 2018, 11, 78–86.

    Article  CAS  Google Scholar 

  11. Hedley, G. J.; Quarti, C.; Harwell, J.; Prezhdo, O. V.; Beljonne, D.; Samuel, I. D. W. Hot-hole cooling controls the initial ultrafast relaxation in methylammonium lead iodide perovskite. Sci. Rep. 2018, 8, 8115.

    Article  Google Scholar 

  12. Si, J. J.; Liu, Y.; Wang, N. N.; Xu, M.; Li, J.; He, H. P.; Wang, J. P.; Jin, Y. Z. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Res. 2017, 10, 1329–1335.

    Article  CAS  Google Scholar 

  13. Cao, F. R.; Liao, Q. L.; Deng, K. M.; Chen, L.; Li, L.; Zhang, Y. Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors. Nano Res. 2018, 11, 1722–1730.

    Article  CAS  Google Scholar 

  14. Wu, Y. X.; Li, J.; Xu, J.; Du, Y. Y.; Huang, L. K.; Ni, J.; Cai, H. K.; Zhang, J. J. Organic-inorganic hybrid CH3NH3PbI3 perovskite materials as channels in thin-film field-effect transistors. RSC Adv. 2016, 6, 16243–16249.

    Article  CAS  Google Scholar 

  15. Mikosch, A.; Ciftci, S.; Tainter, G.; Shivanna, R.; Haehnle, B.; Deschler, F.; Kuehne, A. J. C. Laser emission from self-assembled colloidal crystals of conjugated polymer particles in a metal-halide perovskite matrix. Chem. Mater. 2019, 31, 2590–2596.

    Article  CAS  Google Scholar 

  16. Huang, W. X.; Sadhu, S.; Ptasinska, S. Heat- and gas-induced transformation in CH3NH3PbI3 perovskites and its effect on the efficiency of solar cells. Chem. Mater. 2017, 29, 8478–8485.

    Article  CAS  Google Scholar 

  17. Yu, W. J.; Sun, X. R.; Xiao, M.; Hou, T.; Liu, X.; Zheng, B. L.; Yu, H.; Zhang, M.; Huang, Y. L.; Hao, X. J. Recent advances on interface engineering of perovskite solar cells. Nano Res. 2021, inpress.

  18. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  CAS  Google Scholar 

  19. Mao, L. L.; Ke, W. J.; Pedesseau, L.; Wu, Y. L.; Katan, C.; Even, J.; Wasielewski, M. R.; Stoumpos, C. C.; Kanatzidis, M. G. Hybrid dion-jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 2018, 140, 3775–3783.

    Article  CAS  Google Scholar 

  20. Dong, D. D.; Deng, H.; Hu, C.; Song, H. B.; Qiao, K. K.; Yang, X. K.; Zhang, J.; Cai, F. S.; Tang, J.; Song, H. S. Bandgap tunable Csx(CH3NH3)1−xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices. Nanoscale 2017, 9, 1567–1574.

    Article  CAS  Google Scholar 

  21. Yavari, M.; Ebadi, F.; Meloni, S.; Wang, Z. S.; Yang, T. C. J.; Sun, S. J.; Schwartz, H.; Wang, Z. W.; Niesen, B.; Durantini, J. et al. How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers. J. Mater. Chem. A 2019, 7, 23838–23853.

    Article  CAS  Google Scholar 

  22. Xiong, Y.; Xu, L.; Wu, P.; Sun, L.; Xie, G.; Hu, B. Bismuth doping-induced stable seebeck effect based on MAPbI3 polycrystalline thin films. Adv. Funct. Mater. 2019, 29, 1900615.

    Article  Google Scholar 

  23. Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem., Int. Ed. 2014, 53, 3151–3157.

    Article  CAS  Google Scholar 

  24. Zhou, Y.; Chen, J.; Bakr, O. M.; Sun, H. T. Metal-doped lead halide perovskites: Synthesis, properties, and optoelectronic applications. Chem. Mater. 2018, 30, 6589–6613.

    Article  CAS  Google Scholar 

  25. He, J. L.; Vasenko, A. S.; Long, R.; Prezhdo, O. V. Halide composition controls electron-hole recombination in cesium-lead halide perovskite quantum dots: A time domain ab initio study. J. Phys. Chem. Lett. 2018, 9, 1872–1879.

    Article  CAS  Google Scholar 

  26. Choi, H.; Jeong, J.; Kim, H. B.; Kim, S.; Walker, B.; Kim, G. H.; Kim, J. Y. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 2014, 7, 80–85.

    Article  CAS  Google Scholar 

  27. McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155.

    Article  CAS  Google Scholar 

  28. Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.

    Article  CAS  Google Scholar 

  29. Shi, Z. J.; Guo, J.; Chen, Y. H.; Li, Q.; Pan, Y. F.; Zhang, H. J.; Xia, Y. D.; Huang, W. Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: Recent advances and perspectives. Adv. Mater. 2017, 29, 1605005.

    Article  Google Scholar 

  30. Nagane, S.; Ghosh, D.; Hoye, R. L. Z.; Zhao, B. D.; Ahmad, S.; Walker, A. B.; Islam, M. S.; Ogale, S.; Sadhanala, A. Lead-free perovskite semiconductors based on germanium-tin solid solutions: Structural and optoelectronic properties. J. Phys. Chem. C 2018, 122, 5940–5947.

    Article  CAS  Google Scholar 

  31. Yu, H.; Wang, F.; Xie, F. Y.; Li, W. W.; Chen, J.; Zhao, N. The role of chlorine in the formation process of “CH3NH3PbI3−xClx” perovskite. Adv. Funct. Mater. 2014, 24, 7102–7108.

    CAS  Google Scholar 

  32. Ma, Y. Z.; Zheng, L. L.; Chung, Y. H.; Chu, S. S.; Xiao, L. X.; Chen, Z. J.; Wang, S. F.; Qu, B.; Gong, Q. H.; Wu, Z. X. et al. A Highly efficient mesoscopic solar cell based on CH3NH3PbI3−xClx fabricated via sequential solution deposition. Chem. Commun. 2014, 50, 12458–12461.

    Article  CAS  Google Scholar 

  33. Abdelhady, A. L.; Saidaminov, M. I.; Murali, B.; Adinolfi, V.; Voznyy, O.; Katsiev, K.; Alarousu, E.; Comin, R.; Dursun, I.; Sinatra, L. et al. Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals. J. Phys. Chem. Lett. 2016, 7, 295–301.

    Article  CAS  Google Scholar 

  34. Kour, R.; Arya, S.; Verma, S.; Gupta, J.; Bandhoria, P.; Bharti, V.; Datt, R.; Gupta, V. Potential substitutes for replacement of lead in perovskite solar cells: A review. Global Challenges 2019, 3, 1900050.

    Article  Google Scholar 

  35. Han, L. P.; Wu, L. L.; Liu, C.; Zhang, J. Q. Doping-enhanced visible-light absorption of CH3NH3PbBr3 by the Bi3+-induced impurity band without sacrificing a band gap. J. Phys. Chem. C 2019, 123, 8578–8587.

    Article  CAS  Google Scholar 

  36. Yamada, Y.; Hoyano, M.; Oto, K.; Kanemitsu, Y. Effects of impurity doping on photoluminescence properties of APbX3 lead halide perovskites. Phys. Status Solidi B 2019, 256, 1800545.

    Article  Google Scholar 

  37. Nayak, P. K.; Sendner, M.; Wenger, B.; Wang, Z. P.; Sharma, K.; Ramadan, A. J.; Lovrinčić, R.; Pucci, A.; Madhu, P. K.; Snaith, H. J. Impact of Bi3+ heterovalent doping in organic-inorganic metal halide perovskite crystals. J. Am. Chem. Soc. 2018, 140, 574–577.

    Article  CAS  Google Scholar 

  38. Bartolomé, J.; Climent-Pascual, E.; Redondo-Obispo, C.; Zaldo, C.; Álvarez, Á. L.; De Andrés, A.; Coya, C. Huge photostability enhancement in bismuth-doped methylammonium lead iodide hybrid perovskites by light-induced transformation. Chem. Mater. 2019, 31, 3662–3671.

    Article  Google Scholar 

  39. Meng, R.; Wu, G. B.; Zhou, J. Y.; Zhou, H. Q.; Fang, H. H.; Loi, M. A.; Zhang, Y. Understanding the impact of bismuth heterovalent doping on the structural and photophysical properties of CH3NH3PbBr3 halide perovskite crystals with near-IR photoluminescence. Chem. —Eur. J. 2019, 25, 5480–5488.

    Article  CAS  Google Scholar 

  40. Yamada, Y.; Hoyano, M.; Akashi, R.; Oto, K.; Kanemitsu, Y. Impact of chemical doping on optical responses in bismuth-doped CH3NH3PbBr3 single crystals: Carrier lifetime and photon recycling. J. Phys. Chem. Lett. 2017, 8, 5798–5803.

    Article  CAS  Google Scholar 

  41. Ulatowski, A. M.; Wright, A. D.; Wenger, B.; Buizza, L. R. V.; Motti, S. G.; Eggimann, H. J.; Savill, K. J.; Borchert, J.; Snaith, H. J.; Johnston, M. B. et al. Charge-carrier trapping dynamics in bismuth-doped thin films of MAPbBr3 perovskite. J. Phys. Chem. Lett. 2020, 11, 3681–3688.

    Article  CAS  Google Scholar 

  42. Zhou, Y.; Yong, Z. J.; Zhang, K. C.; Liu, B. M.; Wang, Z. W.; Hou, J. S.; Fang, Y. Z.; Zhou, Y.; Sun, H. T.; Song, B. Ultrabroad photoluminescence and electroluminescence at new wavelengths from doped organometal halide perovskites. J. Phys. Chem. Lett. 2016, 7, 2735–2741.

    Article  CAS  Google Scholar 

  43. Haque, A.; Li, J. L.; Abdelhady, A. L.; Saidaminov, M. I.; Baran, D.; Bakr, O. M.; Wei, S. H.; Wu, T. Transition from positive to negative photoconductance in doped hybrid perovskite semiconductors. Adv. Opt. Mater. 2019, 7, 1900865.

    Article  CAS  Google Scholar 

  44. Li, J. L.; Yang, J. X.; Wu, T.; Wei, S. H. Formation of DY Center as n-type limiting defects in octahedral semiconductors: The case of Bi-doped hybrid halide perovskites. J. Mater. Chem. C 2019, 7, 4230–4234.

    Article  CAS  Google Scholar 

  45. Zhang, M.; Yu, H.; Lyu, M. Q.; Wang, Q.; Yun, J. H.; Wang, L. Z. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3−xClx films. Chem. Commun. 2014, 50, 11727–11730.

    Article  CAS  Google Scholar 

  46. Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G. et al. MAPbI3−xClx. mixed halide perovskite for hybrid solar cells: The role of chloride as dopant on the transport and structural properties. Chem. Mater. 2013, 25, 4613–4618.

    Article  CAS  Google Scholar 

  47. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151–157.

    Article  CAS  Google Scholar 

  48. Sun, S. J.; Fang, Y. N.; Kieslich, G.; White, T. J.; Cheetham, A. K. Mechanical properties of organic-inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. J. Mater. Chem. A 2015, 3, 18450–18455.

    Article  CAS  Google Scholar 

  49. Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry; 3rd ed. Cornell University Press: London, 1960.

    Google Scholar 

  50. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

    Article  Google Scholar 

  51. Craig, C. F.; Duncan, W. R.; Prezhdo, O. V. Trajectory surface hopping in the time-dependent kohn-sham approach for electron-nuclear dynamics. Phys. Rev. Lett. 2005, 95, 163001.

    Article  Google Scholar 

  52. Schwartz, B. J.; Bittner, E. R.; Prezhdo, O. V.; Rossky, P. J. Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. J. Chem. Phys. 1996, 104, 5942–5955.

    Article  CAS  Google Scholar 

  53. Habenicht, B. F.; Prezhdo, O. V. Nonradiative quenching of fluorescence in a semiconducting carbon nanotube: A time-domain ab initio study. Phys. Rev. Lett. 2008, 100, 197402.

    Article  Google Scholar 

  54. Wu, B.; Nguyen, H. T.; Ku, Z. L.; Han, G. F.; Giovanni, D.; Mathews, N.; Fan, H. J.; Sum, T. C. Discerning the surface and bulk recombination kinetics of organic-inorganic halide perovskite single crystals. Adv. Energy Mater. 2016, 6, 1600551.

    Article  Google Scholar 

  55. Yamada, T.; Yamada, Y.; Nishimura, H.; Nakaike, Y.; Wakamiya, A.; Murata, Y.; Kanemitsu, Y. Fast free-carrier diffusion in CH3NH3PbBr3 single crystals revealed by time-resolved one- and two-photon excitation photoluminescence spectroscopy. Adv. Electron. Mater. 2016, 2, 1500290.

    Article  Google Scholar 

  56. Wang, K. H.; Li, L. C.; Shellaiah, M.; Sun, K. W. Structural and photophysical properties of methylammonium lead tribromide (MAPbBr3) single crystals. Sci. Rep. 2017, 7, 13643.

    Article  Google Scholar 

  57. Jaeger, H. M.; Fischer, S.; Prezhdo, O. V. Decoherence-induced surface hopping. J. Chem. Phys. 2012, 137, 22A545.

    Article  Google Scholar 

  58. Fischer, S. A.; Habenicht, B. F.; Madrid, A. B.; Duncan, W. R.; Prezhdo, O. V. Regarding the validity of the time-dependent kohnsham approach for electron-nuclear dynamics via trajectory surface hopping. J. Chem. Phys. 2011, 134, 024102.

    Article  Google Scholar 

  59. Akimov, A. V.; Prezhdo, O. V. The PYXAID program for non-adiabatic molecular dynamics in condensed matter systems. J. Chem. Theory Comput. 2013, 9, 4959–4972.

    Article  CAS  Google Scholar 

  60. Akimov, A. V.; Prezhdo, O. V. Advanced capabilities of the PYXAID program: Integration schemes, decoherence effects, multiexcitonic states, and field-matter interaction. J. Chem. Theory Comput. 2014, 10, 789–804.

    Article  CAS  Google Scholar 

  61. Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: New York, 1995.

    Google Scholar 

  62. Wang, S. Y.; Fang, W. H.; Long, R. Hydrogen passivated silicon grain boundaries greatly reduce charge recombination for improved silicon/perovskite tandem solar cell performance: Time domain Ab Initio analysis. J. Phys. Chem. Lett. 2019, 10, 2445–2452.

    Article  CAS  Google Scholar 

  63. Wei, Y. Q.; Long, R. Grain boundaries are benign and suppress nonradiative electron-hole recombination in monolayer black phosphorus: A time-domain ab initio study. J. Phys. Chem. Lett. 2018, 9, 3856–3862.

    Article  CAS  Google Scholar 

  64. Yang, Y. T.; Fang, W. H.; Benderskii, A.; Long, R.; Prezhdo, O. V. Strain controls charge carrier lifetimes in monolayer WSe2: Ab initio time domain analysis. J. Phys. Chem. Lett. 2019, 10, 7732–7739.

    Article  CAS  Google Scholar 

  65. Wang, X. L.; Long, R. Oxidation notably accelerates nonradiative electron-hole recombination in MoS2 by different mechanisms: Time-domain Ab Initio analysis. J. Phys. Chem. Lett. 2020, 11, 4086–4092.

    Article  CAS  Google Scholar 

  66. Yaffe, O.; Guo, Y. S.; Tan, L. Z.; Egger, D. A.; Hull, T.; Stoumpos, C. C.; Zheng, F.; Heinz, T. F.; Kronik, L.; Kanatzidis, M. G. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 2017, 118, 13600.

    Article  Google Scholar 

  67. Zhang, Z. S.; Fang, W. H.; Long, R.; Prezhdo, O. V. Exciton dissociation and suppressed charge recombination at 2D perovskite edges: Key roles of unsaturated halide bonds and thermal disorder. J. Am. Chem. Soc. 2019, 141, 15557–15566.

    Article  CAS  Google Scholar 

  68. Shi, R.; Zhang, Z. S.; Fang, W. H.; Long, R. Charge localization control of electron-hole recombination in multilayer two-dimensional dion-jacobson hybrid perovskites. J. Mater. Chem. A 2020, 8, 9168–9176.

    Article  CAS  Google Scholar 

  69. Wang, Y. T.; Fang, W. H.; Long, R.; Prezhdo, O. V. Symmetry breaking at MAPbI3 perovskite grain boundaries suppresses charge recombination: Time-domain ab initio analysis. J. Phys. Chem. Lett. 2019, 10, 1617–1623.

    Article  CAS  Google Scholar 

  70. Wang, Y. T.; He, J. L.; Yang, Y. C.; Zhang, Z. K.; Long, R. Chlorine passivation of grain boundary suppresses electron-hole recombination in CsPbBr3 perovskite by nonadiabatic molecular dynamics simulation. ACS Appl. Energy Mater. 2019, 2, 3419–3426.

    Article  CAS  Google Scholar 

  71. Shi, R.; Vasenko, A. S.; Long, R.; Prezhdo, O. V. Edge influence on charge carrier localization and lifetime in CH3NH3PbBr3 perovskite: Ab Initio quantum dynamics simulation. J. Phys. Chem. Lett. 2020, 11, 9100–9109.

    Article  CAS  Google Scholar 

  72. Qiao, L.; Fang, W. H.; Long, R.; Prezhdo, O. V. Atomic model for alkali metal passivation of point defects at perovskite grain boundaries. ACS Energy Lett. 2020, 5, 3813–3820.

    Article  CAS  Google Scholar 

  73. Qiao, L.; Fang, W. H.; Long, R.; Prezhdo, O. V. Photoinduced dynamics of charge carriers in metal halide perovskites from an atomistic perspective. J. Phys. Chem. Lett. 2020, 11, 7066–7082.

    Article  CAS  Google Scholar 

  74. He, J. L.; Fang, W. H.; Long, R. Unravelling the effects of oxidation state of interstitial iodine and oxygen passivation on charge trapping and recombination in CH3NH3PbI3 perovskite: A time-domain ab initio study. Chem. Sci. 2019, 10, 10079–10088.

    Article  CAS  Google Scholar 

  75. Stier, W.; Duncan, W. R.; Prezhdo, O. V. Thermally assisted sub-10 fs electron transfer in dye-sensitized nanocrystalline TiO2 solar cells. Adv. Mater. 2004, 16, 240–244.

    Article  CAS  Google Scholar 

  76. Long, R.; Casanova, D.; Fang, W. H.; Prezhdo, O. V. Donor-acceptor interaction determines the mechanism of photoinduced electron injection from graphene quantum dots into TiO2: π-stacking supersedes covalent bonding. J. Am. Chem. Soc. 2017, 139, 2619–2629.

    Article  CAS  Google Scholar 

  77. Akimov, A. V.; Asahi, R.; Jinnouchi, R.; Prezhdo, O. V. What makes the photocatalytic CO2 reduction on N-doped Ta2O5 efficient: Insights from nonadiabatic molecular dynamics. J. Am. Chem. Soc. 2015, 137, 11517–11525.

    Article  CAS  Google Scholar 

  78. Zhou, Z. H.; Liu, J.; Long, R.; Li, L. Q.; Guo, L. J.; Prezhdo, O. V. Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: Ab initio non-adiabatic molecular dynamics. J. Am. Chem. Soc. 2017, 139, 6707–6717.

    Article  CAS  Google Scholar 

  79. Chu, W. B.; Saidi, W. A.; Prezhdo, O. V. Long-lived hot electron in a metallic particle for plasmonics and catalysis: Ab initio nonadiabatic molecular dynamics with machine learning. Acs Nano 2020, 14, 10608–10615.

    Article  CAS  Google Scholar 

  80. Li, W.; Long, R.; Tang, J. F.; Prezhdo, O. V. Influence of defects on excited-state dynamics in lead halide perovskites: Time-domain ab initio studies. J. Phys. Chem. Lett. 2019, 10, 3788–3804.

    Article  CAS  Google Scholar 

  81. Li, W.; She, Y. L.; Vasenko, A. S.; Prezhdo, O. V. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. Nanoscale 2021, 13, 10239–10265.

    Article  Google Scholar 

  82. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  83. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  84. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  85. Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  86. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  87. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    Article  CAS  Google Scholar 

  88. Chu, W. B.; Zheng, Q. J.; Akimov, A. V.; Zhao, J.; Saidi, W. A.; Prezhdo, O. V. Accurate computation of nonadiabatic coupling with projector augmented-wave pseudopotentials. J. Phys. Chem. Lett. 2020, 11, 10073–10080.

    Article  CAS  Google Scholar 

  89. Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.

    Article  Google Scholar 

  90. Tavernelli, I.; Curchod, B. F. E.; Rothlisberger, U. On nonadiabatic coupling vectors in time-dependent density functional theory. J. Chem. Phys. 2009, 131, 196101.

    Article  Google Scholar 

  91. Hu, C. P.; Hirai, H.; Sugino, O. Nonadiabatic couplings from time-dependent density functional theory. II. Successes and challenges of the pseudopotential approximation. J. Chem. Phys. 2008, 128, 154111.

    Article  Google Scholar 

  92. Reeves, K. G.; Schleife, A.; Correa, A. A.; Kanai, Y. Role of surface termination on hot electron relaxation in silicon quantum dots: A first-principles dynamics simulation study. Nano Lett. 2015, 15, 6429–6433.

    Article  CAS  Google Scholar 

  93. Chadi, D. J.; Chang, K. J. Theory of the atomic and electronic structure of DX centers in GaAs and AlXGA1−XAS alloys. Phys. Rev. Lett. 1988, 61, 873–876.

    Article  CAS  Google Scholar 

  94. Zhang, S. B.; Chadi, D. J. Stability of DX centers in AlXGA1−XAS alloys. Phys. Rev. B 1990, 42, 7174–7177.

    Article  CAS  Google Scholar 

  95. Espinosa, F. J.; De Leon, J. M.; Conradson, S. D.; Peña, J. L.; Zapata-Torres, M. Observation of a photoinduced lattice relaxation in CdTe: In. Phys. Rev. Lett. 1999, 83, 3446–3449.

    Article  CAS  Google Scholar 

  96. Chu, W. B.; Saidi, W. A.; Zhao, J.; Prezhdo, O. V. Soft lattice and defect covalency rationalize tolerance of β-CsPbI3 perovskite solar cells to native defects. Angew. Chem., Int. Ed. 2020, 59, 6435–6441.

    Article  CAS  Google Scholar 

  97. Tang, W. D.; Zhang, J. S.; Ratnasingham, S.; Liscio, F.; Chen, K.; Liu, T. J.; Wan, K. N.; Galindez, E. S.; Bilotti, E.; Reece, M. et al. Substitutional doping of hybrid organic-inorganic perovskite crystals for thermoelectrics. J. Mater. Chem. A 2020, 8, 13594–13599.

    Article  CAS  Google Scholar 

  98. Zhao, X.; Long, R. Benign effects of twin boundaries on charge carrier lifetime in metal halide perovskites by a time-domain study. J. Phys. Chem. Lett. 2021, 12, 8575–8582.

    Article  CAS  Google Scholar 

  99. Li, W.; Vasenko, A. S.; Tang, J. F.; Prezhdo, O. V. Anharmonicity extends carrier lifetimes in lead halide perovskites at elevated temperatures. J. Phys. Chem. Lett. 2019, 10, 6219–6226.

    Article  CAS  Google Scholar 

  100. Balan, A. D.; Eshet, H.; Olshansky, J. H.; Lee, Y. V.; Rabani, E.; Alivisatos, A. P. Effect of thermal fluctuations on the radiative rate in core/shell quantum dots. Nano Lett. 2017, 17, 1629–1636.

    Article  CAS  Google Scholar 

  101. Habib, M.; Kar, M.; Pal, S.; Sarkar, P. Role of chalcogens in the exciton relaxation dynamics of chalcogenol-functionalized CdSe QD: A time-domain atomistic simulation. Chem. Mater. 2019, 31, 4042–4050.

    Article  CAS  Google Scholar 

  102. Arfin, H.; Kshirsagar, A. S.; Kaur, J.; Mondal, B.; Xia, Z. G.; Chakraborty, S.; Nag, A. Ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem. Mater. 2020, 32, 10255–10267.

    Article  CAS  Google Scholar 

  103. Kitazawa, N.; Watanabe, Y.; Nakamura, Y. Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. J. Mater. Sci. 2002, 37, 3585–3587.

    Article  CAS  Google Scholar 

  104. Yin, W. J.; Yan, Y. F.; Wei, S. H. Anomalous alloy properties in mixed halide perovskites. J. Phys. Chem. Lett. 2014, 5, 3625–3631.

    Article  CAS  Google Scholar 

  105. Macdonald, D.; Geerligs, L. J. Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon. Appl. Phys. Lett. 2004, 85, 4061–4063.

    Article  CAS  Google Scholar 

  106. Rodriguez, J. B.; Plis, E.; Bishop, G.; Sharma, Y. D.; Kim, H.; Dawson, L. R.; Krishna, S. nBn structure based on In As/Ga Sb type-II strained layer superlattices. Appl. Phys. Lett. 2007, 91, 043514.

    Article  Google Scholar 

  107. Brandt, R. E.; Poindexter, J. R.; Gorai, P.; Kurchin, R. C.; Hoye, R. L. Z.; Nienhaus, L.; Wilson, M. W. B.; Polizzotti, J. A.; Sereika, R.; Žaltauskas, R. et al. Searching for “defect-tolerant” photovoltaic materials: Combined theoretical and experimental screening. Chem. Mater. 2017, 29, 4667–4674.

    Article  CAS  Google Scholar 

  108. Kilina, S. V.; Neukirch, A. J.; Habenicht, B. F.; Kilin, D. S.; Prezhdo, O. V. Quantum zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots. Phys. Rev. Lett. 2013, 110, 180404.

    Article  Google Scholar 

  109. Prezhdo, O. V. Quantum anti-zeno acceleration of a chemical reaction. Phys. Rev. Lett. 2000, 85, 4413–4417.

    Article  CAS  Google Scholar 

  110. Xie, L. Q.; Zhang, T. Y.; Chen, L.; Guo, N. J.; Wang, Y.; Liu, G. K.; Wang, J. R.; Zhou, J. Z.; Yan, J. W.; Zhao, Y. X. et al. Organic-inorganic interactions of single crystalline organolead halide perovskites studied by raman spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 18112–18118.

    Article  CAS  Google Scholar 

  111. Leguy, A. M. A.; Goñi, A. R.; Frost, J. M.; Skelton, J.; Brivio, F.; Rodríguez-Martínez, X.; Weber, O. J.; Pallipurath, A.; Alonso, M. I.; Campoy-Quiles, M. et al. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 2016, 18, 27051–27066.

    Article  CAS  Google Scholar 

  112. Ledinský, M.; Löper, P.; Niesen, B.; Holovský, J.; Moon, S. J.; Yum, J. H.; De Wolf, S.; Fejfar, A.; Ballif, C. Raman spectroscopy of organic-inorganic halide perovskites. J. Phys. Chem. Lett. 2015, 6, 401–406.

    Article  Google Scholar 

  113. Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J. M.; Lee, M. M.; Snaith, H. J.; Petrozza, A.; De Angelis, F. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: Interplay of theory and experiment. J. Phys. Chem. Lett. 2014, 5, 279–284.

    Article  CAS  Google Scholar 

  114. Li, C.; Chen, X.; Li, N.; Liu, J. L.; Yuan, B. L.; Li, Y. J.; Wang, M.; Xu, F.; Wu, Y. Q.; Cao, B. Q. Highly conductive N-type CH3NH3PbI3 single crystals doped with bismuth donors. J. Mater. Chem. C 2020, 8, 3694–3704.

    Article  CAS  Google Scholar 

  115. Madrid, A. B.; Hyeon-Deuk, K.; Habenicht, B. F.; Prezhdo, O. V. Phonon-induced dephasing of excitons in semiconductor quantum dots: Multiple exciton generation, fission, and luminescence. ACS Nano 2009, 3, 2487–2494.

    Article  CAS  Google Scholar 

  116. Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv. Energy Mater. 2015, 5, 1400812.

    Article  Google Scholar 

  117. Li, J. Q.; Yuan, Z. K.; Chen, S. Y.; Gong, X. G.; Wei, S. H. Effective and noneffective recombination center defects in Cu2ZnSnS4: Significant difference in carrier capture cross sections. Chem. Mater. 2019, 31, 826–833.

    Article  CAS  Google Scholar 

  118. Habenicht, B. F.; Kamisaka, H.; Yamashita, K.; Prezhdo, O. V. Ab initio study of vibrational dephasing of electronic excitations in semiconducting carbon nanotubes. Nano Lett. 2007, 7, 3260–3265.

    Article  CAS  Google Scholar 

  119. Hyeon-Deuk, K.; Prezhdo, O. V. Multiple exciton generation and recombination dynamics in small Si and CdSe quantum dots: An ab initio time-domain study. Acs Nano 2012, 6, 1239–1250.

    Article  CAS  Google Scholar 

  120. Chaban, V. V.; Prezhdo, V. V.; Prezhdo, O. V. Covalent linking greatly enhances photoinduced electron transfer in fullerene-quantum dot nanocomposites: Time-domain ab initio study. J. Phys. Chem. Lett. 2013, 4, 1–6.

    Article  CAS  Google Scholar 

  121. Long, R.; Prezhdo, O. V. Asymmetry in the electron and hole transfer at a polymer-carbon nanotube heterojunction. Nano Lett. 2014, 14, 3335–3341.

    Article  CAS  Google Scholar 

  122. Li, L. Q.; Long, R.; Bertolini, T.; Prezhdo, O. V. Sulfur adatom and vacancy accelerate charge recombination in MoS2 but by different mechanisms: Time-domain ab initio analysis. Nano Lett. 2017, 17, 7962–7967.

    Article  CAS  Google Scholar 

  123. Mannodi-Kanakkithodi, A.; Park, J. S.; Jeon, N.; Cao, D. H.; Gosztola, D. J.; Martinson, A. B. F.; Chan, M. K. Y. Comprehensive computational study of partial lead substitution in methylammonium lead bromide. Chem. Mater. 2019, 31, 3599–3612.

    Article  CAS  Google Scholar 

  124. Zhang, L. L.; Vasenko, A. S.; Zhao, J.; Prezhdo, O. V. Monoelemental properties of 2D black phosphorus ensure extended charge carrier lifetimes under oxidation: Time-domain ab initio analysis. J. Phys. Chem. Lett. 2019, 10, 1083–1091.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Su-Huai Wei for fruitful discussion. This work was supported by the Beijing Science Foundation (No. 2212031), and the National Natural Science Foundation of China (Nos. 51861135101, 21973006, 21573022, 21688102 and 21590801). R. L. acknowledges the Recruitment Program of Global Youth Experts of China and the Beijing Normal University Startup. O. V. P. acknowledges funding from the U.S. Department of Energy (No. DE-SC0014429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run Long.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Fang, WH., Vasenko, A.S. et al. Efficient passivation of DY center in CH3NH3PbBr3 by chlorine: Quantum molecular dynamics. Nano Res. 15, 2112–2122 (2022). https://doi.org/10.1007/s12274-021-3840-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3840-y

Keywords

Navigation