Skip to main content
Log in

Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Triboelectric nanogenerator (TENG) has been proved as a promising energy harvester in recent years, but the challenges of exploring economically triboelectric materials still exist and have aroused interests of many researchers. In this paper, chitosansilk fibroin-airlaid paper composite film (CSA film) was fabricated and then the CSA film based-triboelectric nanogenerator (CSA-TENG) was constructed, which presents an opportunity for natural polymers to be applied in triboelectric materials. Due to the excellent electron donating ability of CSA film, the CSA-TENG can harvest environmental energy with a high efficiency. More importantly, the as-designed CSA film based dual-electrode triboelectric nanogenerator (CSA-D-TENG) is successfully assembled into hand clapper and trampoline to harvest mechanical energies generated by human bodies, it is also capable of monitoring human movement while harvesting biomechanical energies. This work provides a simple and environmental-friendly way to develop TENG for biomechanical energies harvesting and human motion monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hinchet, R.; Seung, W.; Kim, S. W. Recent progress on flexible triboelectric nanogenerators for selfpowered electronics. ChemSusChem. 2015, 8, 2327–2344.

    Article  CAS  Google Scholar 

  2. Wang, Y.; Yang, Y.; Wang, Z. L. Triboelectric nanogenerators as flexible power sources. npj Flex. Electron. 2017, 1, 10.

    Article  Google Scholar 

  3. Lai, Y. J.; Li, Z. J.; Zhao, W. X.; Cheng, X. N.; Xu, S.; Yu, X.; Liu, Y. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 2020, 13, 3347–3357.

    Article  CAS  Google Scholar 

  4. Cao, X.; Jie, Y.; Wang, N.; Wang, Z. L. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy. Mater. 2016, 6, 1600665.

    Article  Google Scholar 

  5. Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283–4305.

    Article  CAS  Google Scholar 

  6. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  CAS  Google Scholar 

  7. Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Acs Nano 2013, 7, 9533–9557.

    Article  CAS  Google Scholar 

  8. Hwang, H. J.; Jung, Y.; Choi, K.; Kim, D.; Park, J.; Choi, D. Comb-structured triboelectric nanogenerators for multi-directional energy scavenging from human movements. Sci. Technol. Adv. Mater. 2019, 20, 725–732.

    Article  CAS  Google Scholar 

  9. Lee, K.; Lee, J. W.; Kim, K.; Yoo, D.; Kim, D. S.; Hwang, W.; Song, I.; Sim, J. Y. A spherical hybrid triboelectric nanogenerator for enhanced water wave energy harvesting. Micromachines 2018, 9, 598.

    Article  Google Scholar 

  10. Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.

    Article  Google Scholar 

  11. He, J.; Cao, S. L.; Zhang, H. L. Cylinder-based hybrid rotary nanogenerator for harvesting rotational energy from axles and self-powered tire pressure monitoring. Energy Sci. Eng. 2020, 8, 291–299.

    Article  Google Scholar 

  12. Wang, G.; Ma, H.; Jin, X.; Yuan, H.; Wei, Y.; Li, Q. Q.; Jiang, K. L.; Fan, S. S. Bidirectional micro-actuators based on eccentric coaxial composite oxide nanofiber. Nano Res. 2020, 13, 2451–2459.

    Article  CAS  Google Scholar 

  13. Baik, J. M.; Lee, J. P. Strategies for ultrahigh outputs generation in triboelectric energy harvesting technologies: From fundamentals to devices. Sci. Technol. Adv. Mater. 2019, 20, 927–936.

    Article  Google Scholar 

  14. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  15. Lee, B. Y.; Kim, D. H.; Park, J.; Park, K. I.; Lee, K. J.; Jeong, C. K. Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Sci. Technol. Adv. Mater. 2019, 20, 758–773.

    Article  CAS  Google Scholar 

  16. Yu, Y. H.; Wang, X. D. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech. Lett. 2016, 9, 514–530.

    Article  Google Scholar 

  17. Jin, L.; Zhang, B. B.; Zhang, L. Yang, W. Q. Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy 2019, 66, 104086.

    Article  CAS  Google Scholar 

  18. Zhou, Q. T.; Kim, J. N.; Han, K. W.; Oh, S. W.; Umrao, S.; Chae, E. J.; Oh, I. K. Integrated dielectric-electrode layer for triboelectric nanogenerator based on Cu nanowire-Mesh hybrid electrode. Nano Energy 2019, 59, 120–128.

    Article  CAS  Google Scholar 

  19. Wang, J. Y.; Ding, W. B.; Pan, L.; Wu, C. S.; Yu, H.; Yang, L. J.; Liao, R. J.; Wang, Z. L. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. Acs Nano 2018, 12, 3954–3963.

    Article  CAS  Google Scholar 

  20. Han, Y. J.; Han, Y. F.; Zhang, X. P.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G.; Yu, H. D.; Huang, W. Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self-powered sensing of human physiological signals. ACS Appl. Mater. Interfaces 2020, 12, 16442–16450.

    Article  CAS  Google Scholar 

  21. Buslovich, A.; Horev, B.; Shebis, Y.; Rodov, V.; Gedanken, A.; Poverenov, E. A facile method for the deposition of volatile natural compound-based nanoparticles on biodegradable polymer surfaces. J. Mater. Chem. B 2018, 6, 2240–2249.

    Article  CAS  Google Scholar 

  22. Crini, G.; Badot, P. M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 2008, 33, 399–447.

    Article  CAS  Google Scholar 

  23. LogithKumar, R.; KeshavNarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A review of chitosan and its derivatives in bone tissue engineering. Carbohyd. Polym. 2016, 151, 172–188.

    Article  CAS  Google Scholar 

  24. Pillai, C. K. S.; Paul, W.; Sharma, C. P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678.

    Article  CAS  Google Scholar 

  25. Gore, P. M.; Naebe, M.; Wang, X. G. Kandasubramanian, B. Progress in silk materials for integrated water treatments: Fabrication, modification and applications. Chem. Eng. J. 2019, 374, 437–470.

    Article  CAS  Google Scholar 

  26. Vepari, C.; Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007.

    Article  CAS  Google Scholar 

  27. Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J. S.; Lu, H.; Richmond, J.; Kaplan, D. L. Silk-based biomaterials. Biomaterials 2003, 24, 401–416.

    Article  CAS  Google Scholar 

  28. Koeppel, A.; Holland, C. Progress and trends in artificial silk spinning: A systematic review. ACS Biomater. Sci. Eng. 2017, 3, 226–237.

    Article  CAS  Google Scholar 

  29. Yang, D. C.; Song, Z. C.; Shen, J. L.; Song, H.; Yang, J. J. Zhang, P. H.; Gu, Y. Regenerated silk fibroin (RSF) electrostatic spun fibre composite with polypropylene mesh for reconstruction of abdominal wall defects in a rat model. Artif. Cell, Nanomed., Biotechnol. 2020, 48, 425–434.

    Article  CAS  Google Scholar 

  30. Wang, C. Y.; Xia, K. L.; Zhang, Y. Y.; Kaplan, D. L. Silk-based advanced materials for soft electronics. Acc. Chem. Res. 2019, 52, 2916–2927.

    Article  CAS  Google Scholar 

  31. Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

    Article  Google Scholar 

  32. Ahmed, T. A.; Aljaeid, B. M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug. Des. Devel. Ther. 2016, 10, 483–507.

    Article  CAS  Google Scholar 

  33. Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926.

    Article  CAS  Google Scholar 

  34. Wang, M.; Zhang, J. H.; Tang, Y. J.; Li, J.; Zhang, B. S.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. Acs Nano 2018, 12, 6156–6162.

    Article  CAS  Google Scholar 

  35. Zhang, Z. C.; Zhang, J. W.; Zhang, H.; Wang, H. G.; Hu, Z. W.; Xuan, W. P.; Dong, S. R.; Luo, J. K. A portable triboelectric nanogenerator for real-time respiration monitoring. Nanoscale Res. Lett. 2019, 14, 354.

    Article  Google Scholar 

  36. Wu, Z. Y.; Ding, W. B.; Dai, Y. J.; Dong, K.; Wu, C. S.; Zhang, L.; Lin, Z. M.; Cheng, J.; Wang, Z. L. Self-powered multifunctional motion sensor enabled by magnetic-regulated triboelectric nanogenerator. ACS Nano 2018, 12, 5726–5733.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Project from Ministry of Science and Technology (Nos. 2016YFA0202702 and 2016YFA0202701), and the Key Research Program of Frontier Sciences, CAS (No. ZDBS-LY-DQC025). Patents have been filed to protect the reported inventions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Cao, Ning Wang or Zhong Lin Wang.

Electronic Supplementary Material

Supplementary material, approximately 43.8 MB.

Supplementary material, approximately 1.01 MB.

Supplementary material, approximately 668 KB.

Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Lu, Q., Cao, X. et al. Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion. Nano Res. 15, 2505–2511 (2022). https://doi.org/10.1007/s12274-021-3764-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3764-6

Keywords

Navigation