Skip to main content
Log in

Determine the position of nanoparticles in cells by using surface-enhanced Raman three-dimensional imaging

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Structure, especially to track and monitor the phagocytosis process of nanoparticles by cells. Herein, we prepared a MoO2 hollow nanosphere with a strong surface plasmon resonance effect in the visible light region, which exhibited an excellent surface enhanced Raman scattering effect. When the 4-mercaptobenzoic acid (4-MBA) molecules are modified, it can be efficiently used as Raman probe molecules to perform clear three-dimensional cell imaging. No matter when the nanoparticles are located inside the cell, outside the cell or partly inside the cell, they all can be clearly presented by this enhanced Raman probe molecule. These results provide a rapid and accurate method for three-dimensional imaging of cells, especially for tracking the phagocytosis of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wegner, K. D.; Hildebrandt, N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 2015, 44, 4792–4834.

    Article  CAS  Google Scholar 

  2. Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

    Article  CAS  Google Scholar 

  3. Hötzer, B.; Medintz, I. L.; Hildebrandt, N. Fluorescence in nanobiotechnology: Sophisticated fluorophores for novel applications. Small 2012, 8, 2297–2326.

    Article  CAS  Google Scholar 

  4. Morgner, F.; Geißler, D.; Stufler, S.; Butlin, N. G.; Löhmannsröben, H. G.; Hildebrandt, N. A quantum-dot-based molecular ruler for multiplexed optical analysis. Angew. Chem., Int. Ed. 2010, 49, 7570–7574.

    Article  CAS  Google Scholar 

  5. Wegner, K. D.; Morgner, F.; Oh, E.; Goswami, R.; Susumu, K.; Stewart, M. H.; Medintz, I. L.; Hildebrandt, N. Three-dimensional solution-phase förster resonance energy transfer analysis of nanomolar quantum dot bioconjugates with subnanometer resolution. Chem. Mater. 2014, 26, 4299–4312.

    Article  CAS  Google Scholar 

  6. Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Wu, F.; Wang, Q. B. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789–14804.

    Article  CAS  Google Scholar 

  7. Yezhelyev, M. V.; Qi, L. F.; O’Regan, R. M.; Nie, S. M.; Gao, X. H. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J. Am. Chem. Soc. 2008, 130, 9006–9012.

    Article  CAS  Google Scholar 

  8. Anderson, N.; Anger, P.; Hartschuh, A.; Novotny, L. Subsurface Raman imaging with nanoscale resolution. Nano Lett. 2006, 6, 744–749.

    Article  CAS  Google Scholar 

  9. Song, Z. L.; Chen, Z.; Bian, X.; Zhou, L. Y.; Ding, D.; Liang, H.; Zou, Y. X.; Wang, S. S.; Chen, L.; Yang, C. et al. Alkyne-functionalized superstable graphitic silver nanoparticles for Raman imaging. J. Am. Chem. Soc. 2014, 136, 13558–13561.

    Article  CAS  Google Scholar 

  10. Wang, X.; Liu, G. K.; Xu, M. X.; Ren, B.; Tian, Z. Q. Development of weak signal recognition and an extraction algorithm for Raman imaging. Anal. Chem. 2019, 91, 12909–12916.

    Article  CAS  Google Scholar 

  11. Yamakoshi, H.; Dodo, K.; Palonpon, A.; Ando, J.; Fujita, K.; Kawata, S.; Sodeoka, M. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells. J. Am. Chem. Soc. 2012, 134, 20681–20689.

    Article  CAS  Google Scholar 

  12. He, Z.; Han, Z. H.; Kizer, M.; Linhardt, R. J.; Wang, X.; Sinyukov, A. M.; Wang, J. Z.; Deckert, V.; Sokolov, A. V.; Hu, J. et al. Tip-enhanced Raman imaging of single-stranded DNA with single base resolution. J. Am. Chem. Soc. 2019, 141, 753–757.

    Article  CAS  Google Scholar 

  13. Palonpon, A. F.; Ando, J.; Yamakoshi, H.; Dodo, K.; Sodeoka, M.; Kawata, S.; Fujita, K. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 2013, 8, 677–692.

    Article  CAS  Google Scholar 

  14. Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898–911.

    Article  CAS  Google Scholar 

  15. Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906.

    Article  CAS  Google Scholar 

  16. Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986.

    Article  CAS  Google Scholar 

  17. Zong, C.; Xu, M. X.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946–4980.

    Article  CAS  Google Scholar 

  18. Kong, L. B.; Navas-Moreno, M.; Chan, J. W. Fast confocal Raman imaging using a 2-D multifocal array for parallel hyperspectral detection. Anal. Chem. 2016, 88, 1281–1285.

    Article  CAS  Google Scholar 

  19. Jokerst, J. V.; Cole, A. J.; Van de Sompel, D.; Gambhir, S. S. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 2012, 6, 10366–10377.

    Article  CAS  Google Scholar 

  20. Huang, Y. M.; Swarup, V. P.; Bishnoi, S. W. Rapid Raman imaging of stable, functionalized nanoshells in mammalian cell cultures. Nano Lett. 2009, 9, 2914–2920.

    Article  CAS  Google Scholar 

  21. Kang, J. W.; Nguyen, F. T.; Lue, N.; Dasari, R. R.; Heller, D. A. Measuring uptake dynamics of multiple identifiable carbon nanotube species via high-speed confocal Raman imaging of live cells. Nano Lett. 2012, 12, 6170–6174.

    Article  CAS  Google Scholar 

  22. Zhang, W.; Dong, Z. Q.; Zhu, L.; Hou, Y. Z.; Qiu, Y. P. Direct observation of the release of nanoplastics from commercially recycled plastics with correlative Raman imaging and scanning electron microscopy. ACS Nano 2020, 14, 7920–7926.

    Article  CAS  Google Scholar 

  23. Bocklitz, T. W.; Crecelius, A. C.; Matthäus, C.; Tarcea, N.; von Eggeling, F.; Schmitt, M.; Schubert, U. S.; Popp, J. Deeper understanding of biological tissue: Quantitative correlation of MALDITOF and Raman imaging. Anal. Chem. 2013, 85, 10829–10834.

    Article  CAS  Google Scholar 

  24. Clemente, I.; Aznar, M.; Nerín, C. Raman imaging spectroscopy as a tool to investigate the cell damage on Aspergillus ochraceus caused by an antimicrobial packaging containing benzyl isothiocyanate. Anal. Chem. 2016, 88, 4772–4779.

    Article  CAS  Google Scholar 

  25. Ishigaki, M.; Meksiarun, P.; Kitahama, Y.; Zhang, L. L.; Hashimoto, H.; Genkawa, T.; Ozaki, Y. Unveiling the aggregation of lycopene in vitro and in vivo: UV-Vis, resonance Raman, and Raman imaging studies. J. Phys. Chem. B 2017, 121, 8046–8057.

    Article  CAS  Google Scholar 

  26. Pozzi, E. A.; Sonntag, M. D.; Jiang, N.; Klingsporn, J. M.; Hersam, M. C.; Van Duyne, R. P. Tip-enhanced Raman imaging: An emergent tool for probing biology at the nanoscale. ACS Nano 2013, 7, 885–888.

    Article  CAS  Google Scholar 

  27. Ertsgaard, C. T.; Wittenberg, N. J.; Klemme, D. J.; Barik, A.; Shih, W. C.; Oh, S. H. Integrated nanogap platform for sub-volt dielectrophoretic trapping and real-time Raman imaging of biological nanoparticles. Nano Lett. 2018, 18, 5946–5953.

    Article  CAS  Google Scholar 

  28. Karanja, C. W.; Hong, W. L.; Younis, W.; Eldesouky, H. E.; Seleem, M. N.; Cheng, J. X. Stimulated Raman imaging reveals aberrant lipogenesis as a metabolic marker for azole-resistant Candida albicans. Anal. Chem. 2017, 89, 9822–9829.

    Article  CAS  Google Scholar 

  29. Toda, S.; Yanagita, N.; Jokar, E.; Diau, E. W. G.; Shigeto, S. Inter- and intragrain inhomogeneity in 2D perovskite thin films revealed by relative grain orientation imaging using low-frequency polarized Raman microspectroscopy. J. Phys. Chem. Lett. 2020, 11, 3871–3876.

    Article  CAS  Google Scholar 

  30. Arzumanyan, G. M.; Doroshkevich, N. V.; Mamatkulov, K. Z.; Shashkov, S. N.; Zinovev, E. V.; Vlasov, A. V.; Round, E. S.; Gordeliy, V. I. Highly sensitive coherent anti-stokes Raman scattering imaging of protein crystals. J. Am. Chem. Soc. 2016, 138, 13457–13460.

    Article  CAS  Google Scholar 

  31. Liu, H. L.; Yang, Z. L.; Meng, L. Y.; Sun, Y. D.; Wang, J.; Yang, L. B.; Liu, J. H.; Tian, Z. Q. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J. Am. Chem. Soc. 2014, 136, 5332–5341.

    Article  CAS  Google Scholar 

  32. Zhang, Y. Q.; Gu, Y. Q.; He, J.; Thackray, B. D.; Ye, J. Ultrabright gap-enhanced Raman tags for high-speed bioimaging. Nat. Commun. 2019, 10, 3905.

    Article  CAS  Google Scholar 

  33. Wang, X.; Huang, S. C.; Hu, S.; Yan, S.; Ren, B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271.

    Article  Google Scholar 

  34. Harmsen, S.; Wall, M. A.; Huang, R. M.; Kircher, M. F. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat. Protoc. 2017, 12, 1400–1414.

    Article  CAS  Google Scholar 

  35. Zhang, Q. Q.; Li, X. S.; Ma, Q.; Zhang, Q.; Bai, H.; Yi, W. C.; Liu, J. Y.; Han, J.; Xi, G. C. A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat. Commun. 2017, 8, 14903.

    Article  Google Scholar 

  36. Liu, W.; Li, X. S.; Li, W. T.; Zhang, Q. Q.; Bai, H.; Li, J. F.; Xi, G. C. Highly stable molybdenum dioxide nanoparticles with strong Plasmon resonance are promising in photothermal cancer therapy. Biomaterials 2018, 163, 43–54.

    Article  CAS  Google Scholar 

  37. Zhu, Y. P.; El-Demellawi, J. K.; Yin, J.; Lopatin, S.; Lei, Y. J.; Liu, Z. X.; Miao, X. H.; Mohammed, O. F.; Alshareef, H. N. Unprecedented surface Plasmon modes in monoclinic MoO2 nanostructures. Adv. Mater. 2020, 32, 1908392.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received financial support from the Science Foundation of Chinese Academy of Inspection and Quarantine (No. 2017JK045) and the National Key Research and Development Program of China (No. 2017YFF0210003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcheng Xi.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, W., Li, Y. et al. Determine the position of nanoparticles in cells by using surface-enhanced Raman three-dimensional imaging. Nano Res. 14, 3402–3406 (2021). https://doi.org/10.1007/s12274-021-3726-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3726-z

Keywords

Navigation