Skip to main content
Log in

Block-layer model for intergrowth structures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lattice match and charge transfer between distinct block layers (BLs) play an important role in the formation of an intergrowth structure. Herein we propose a simple BL model addressing the different roles of the lattice match and the charge transfer. Inter-BL charge transfer lowers the internal energy, while lattice match minimizes the elastic energy, both of which together make the intergrowth structure stabilized. The model is able to reproduce the lattice parameters precisely for complex iron-based superconductors with intergrowth structures. The elastic energy and the charge-transfer energy are evaluated with assistance of the first-principles calculations. This work rationalizes the basic principles of BL design for intergrowth structures, which can be utilized not only for finding new superconducting materials but also for investigating other layered materials with various functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bednorz, J. G.; Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B: Condens. Matter 1986, 64, 189–193.

    Article  CAS  Google Scholar 

  2. Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 1987, 58, 908–910.

    Article  CAS  Google Scholar 

  3. Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297.

    Article  CAS  Google Scholar 

  4. Chen, X. H.; Wu, T.; Wu, G.; Liu, R. H.; Chen, H.; Fang, D. F. Superconductivity at 43 K in SmFeAsO1−xFx. Nature 2008, 453, 761–762.

    Article  CAS  Google Scholar 

  5. Jiang, H.; Sun, Y. L.; Xu, Z. A.; Cao, G. H. Crystal chemistry and structural design of iron-based superconductors. Chin. Phys. B 2013, 22, 087410.

    Article  CAS  Google Scholar 

  6. Wang, Z. C.; Cao, G. H. Self-doped iron-based superconductors with intergrowth structures. Acta Phys. Sin. 2018, 67, 207406.

    Google Scholar 

  7. Tokura, Y.; Arima, T. New classification method for layered copper oxide compounds and its application to design of new high Tc superconductors. Jpn. J. Appl. Phys. 1990, 29, 2388.

    Article  CAS  Google Scholar 

  8. Li, R. K.; Zhu, Y. J.; Qian, Y. T.; Chen Z. Y. The preparation and structure of a new layered cuprate: TaSr2(NdCe)2Cu2Oy, the Ta analog of the Tl-1222 phase. Physica C: Supercord. 1991, 176, 19–23.

    Article  CAS  Google Scholar 

  9. Li, R. K. Crystal chemistry and block architecture of high-Tc cuprate superconductors. Appl. Phys. Commun. 1992, 11, 295–316.

    CAS  Google Scholar 

  10. Qian, Y. T.; Tang, K. B.; Yang, P. D.; Chen, Z. Y.; Li, R. K.; Zhou, G. E.; Zhang, Y. H.; Wang, N. L. The synthesis and superconductivity of a new type of Bi-1212 phase (Bi, Cd)Sr2(Y, Ca)Cu2Oz. Physica C: Supercord. 1993, 209, 516–518.

    Article  CAS  Google Scholar 

  11. Park, C.; Snyder, R. L. Structures of high-temperature cuprate superconductors. J. Am. Ceram. Soc. 1995, 78, 3171–3194.

    Article  CAS  Google Scholar 

  12. Wiegers, G. A. Misfit layer compounds: Structures and physical properties. Prog. Solid State Chem. 1996, 24, 1–139.

    Article  CAS  Google Scholar 

  13. Meerschaut, A. Misfit layer compounds. Curr. Opin. Solid State Mater. Sci. 1996, 1, 250–259.

    Article  CAS  Google Scholar 

  14. Sun, Y. L.; Jiang, H.; Zhai, H. F.; Bao, J. K.; Jiao, W. H.; Tao, Q.; Shen, C. Y.; Zeng, Y. W.; Xu, Z. A.; Cao, G. H. Ba2Ti2Fe2As4O: A new superconductor containing Fe2As2 layers and Ti2O sheets. J. Am. Chem. Soc. 2012, 134, 12893–12896.

    Article  CAS  Google Scholar 

  15. Zhai, H. F.; Zhang, P.; Wu, S. Q.; He, C. Y.; Tang, Z. T.; Jiang, H.; Sun, Y. L.; Bao, J. K.; Nowik, I.; Felner, I. et al. Anomalous Eu valence state and superconductivity in undoped Eu3Bi2S4F4. J. Am. Chem. Soc. 2014, 136, 15386–15393.

    Article  CAS  Google Scholar 

  16. Liu, Y.; Liu, Y. B.; Chen, Q.; Tang, Z. T.; Jiao, W. H.; Tao, Q.; Xu, Z. A.; Cao, G. H. A new ferromagnetic superconductor: CsEuFe4As4. Sci. Bull. 2016, 61, 1213–1220.

    Article  CAS  Google Scholar 

  17. Liu, Y.; Liu, Y. B.; Tang, Z. T.; Jiang, H.; Wang, Z. C.; Ablimit, A.; Jiao, W. H.; Tao, Q.; Feng, C. M.; Xu, Z. A. et al. Superconductivity and ferromagnetism in hole-doped RbEuFe4As4. Phys. Rev. B 2016, 93, 214503.

    Article  CAS  Google Scholar 

  18. Wang, Z. C.; He, C. Y.; Wu, S. Q.; Tang, Z. T.; Liu, Y.; Ablimit, A.; Feng, C. M.; Cao, G. H. Superconductivity in KCa2Fe4As4F2 with separate double Fe2As2 layers. J. Am. Chem. Soc. 2016, 138, 7856–7859.

    Article  CAS  Google Scholar 

  19. Shao, Y. T.; Wang, Z. C.; Li, B. Z.; Wu, S. Q.; Wu, J. F.; Ren, Z.; Qiu, S. W.; Rao, C.; Wang, C.; Cao, G. H. BaTh2Fe4As4(N0.7O0.3)2: An iron-based superconductor stabilized by inter-block-layer charge transfer. Sci. China Mater. 2019, 62, 1357–1362.

    Article  Google Scholar 

  20. Wang, Z. C.; He, C. Y.; Wu, S. Q.; Tang, Z. T.; Liu, Y.; Cao, G. H. Synthesis, crystal structure and superconductivity in RbLn2Fe4As4O2 (Ln = Sm, Tb, Dy, and Ho). Chem. Mater. 2017, 29, 1805–1812.

    Article  CAS  Google Scholar 

  21. Wu, S. Q.; Wang, Z. C.; He, C. Y.; Tang, Z. T.; Liu, Y.; Cao, G. H. Superconductivity at 33–37 K in ALn2Fe4As4O2 (A = K and Cs; Ln = lanthanides). Phys. Rev. Mater. 2017, 1, 044804.

    Article  Google Scholar 

  22. Rotter, M.; Tegel, M.; Johrendt, D. Superconductivity at 38 K in the Iron Arsenide (Ba1−xKx)Fe2As2. Phys. Rev. Lett. 2008, 101, 107006.

    Article  CAS  Google Scholar 

  23. Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 1926, 14, 477–485.

    Article  CAS  Google Scholar 

  24. Katrych, S.; Rogacki, K.; Pisoni, A.; Bosma, S.; Weyeneth, S.; Gaal, R.; Zhigadlo, N. D.; Karpinski, J.; Forró, L. Pr4Fe2As2Te1−xO4: A layered FeAs-based superconductor. Phys. Rev. B 2013, 87, 180508(R).

    Article  CAS  Google Scholar 

  25. Lu, X. F.; Wang, N. Z.; Wu, H.; Wu, Y. P.; Zhao, D.; Zeng, X. Z.; Luo, X. G.; Wu, T.; Bao, W.; Zhang, G. H. et al. Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. Nat. Mater. 2015, 14, 325–329.

    Article  CAS  Google Scholar 

  26. Gibson, Q. D.; Dyer, M. S.; Whitehead, G. F. S.; Alaria, J.; Pitcher, M. J.; Edwards, H. J.; Claridge, J. B.; Zanella, M.; Dawson, K.; Manning, T. D. et al. Bi4O4Cu1.7Se2.7Cl0.3: Intergrowth of BiOCuSe and Bi2O2Se stabilized by the addition of a third anion. J. Am. Chem. Soc. 2017, 139, 15568–15571.

    Article  CAS  Google Scholar 

  27. Eul, M.; Johrendt, D.; Pöttgen, R. An extension of pnictide oxide chemistry—Salt flux synthesis and structure of La5Cu4As4O4Cl2. Z. Naturforsch. B 2009, 64, 1353–1359.

    Article  CAS  Google Scholar 

  28. Bartsch, T.; Benndorf, C.; Eckert, H.; Eul, M.; Pöttgen, R. La3Cu4P4O2 and La5Cu4P4O4Cl2: Synthesis, structure and 31P solid state NMR spectroscopy. Z. Naturforsch. B 2016, 71, 149–155.

    Article  CAS  Google Scholar 

  29. Wiegers, G. A. Charge transfer between layers in misfit layer compounds. J. Alloys Compd. 1995, 219, 152–156.

    Article  CAS  Google Scholar 

  30. Yao, Q.; Shen, D. W.; Wen, C. H. P.; Hua, C. Q.; Zhang, L. Q.; Wang, N. Z.; Niu, X. H.; Chen, Q. Y.; Dudin, P.; Lu, Y. H. et al. Charge transfer effects in naturally occurring van der Waals heterostructures (PbSe)1.16(TiSe2)m (m = 1, 2). Phys. Rev. Lett. 2018, 120, 106401.

    Article  CAS  Google Scholar 

  31. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  32. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2017YFA0303002), the National Natural Science Foundation of China (No. 12050003), and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghan Cao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, S., Ji, L. et al. Block-layer model for intergrowth structures. Nano Res. 14, 3629–3635 (2021). https://doi.org/10.1007/s12274-021-3716-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3716-1

Keywords

Navigation