Skip to main content
Log in

Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene doping continues to gather momentum because it enables graphene properties to be tuned, thereby affording new properties to, improve the performance of, and expand the application potential of graphene. Graphene can be chemically doped using various methods such as surface functionalization, hybrid composites (e.g., nanoparticle decoration), and substitution doping, wherein C atoms are replaced by foreign ones in the graphene lattice. Theoretical works have predicted that graphene could be substitutionally doped by aluminum (Al) atoms, which could hold promise for exciting applications, including hydrogen storage and evolution, and supercapacitors. Other theoretical predictions suggest that Al substitutionally doped graphene (AlG) could serve as a material for gas sensors and the catalytic decomposition of undesirable materials. However, fabricating Al substitutionally doped graphene has proven challenging until now. Herein, we demonstrate how controlled-flow chemical vapor deposition (CVD) implementing a simple solid precursor can yield high-quality and large-area monolayer AlG, and this synthesis is unequivocally confirmed using various characterization methods including local electron energy-loss spectroscopy (EELS). Detailed high-resolution transmission electron microscopy (HRTEM) shows numerous bonding configurations between the Al atoms and the graphene lattice, some of which are not theoretically predicted. Furthermore, the produced AlG shows a CO2 capturability superior to those of other substitutionally doped graphenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  CAS  Google Scholar 

  2. Araujo, P. T.; Terrones, M.; Dresselhaus, M. S. Defects and impurities in graphene-like materials. Mater. Today 2012, 15, 98–109.

    Article  CAS  Google Scholar 

  3. Ullah, S.; Hasan, M.; Ta, H. Q.; Zhao, L.; Shi, Q. T.; Fu, L.; Choi, J.; Yang, R. Z.; Liu, Z. F.; Rümmeli, M. H. Synthesis of doped porous 3D graphene structures by chemical vapor deposition and its applications. Adv. Funct. Mater. 2019, 29, 1904457.

    Article  CAS  Google Scholar 

  4. Zhang, J.; Zhao, C.; Liu, N.; Zhang, H. X.; Liu, J. J.; Fu, Y. Q.; Guo, B.; Wang, Z. L.; Lei, S. B.; Hu, P. A. Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms. Sci. Rep. 2016, 6, 28330.

    Article  CAS  Google Scholar 

  5. Rümmeli, M. H.; Borowiak-Palen, E.; Gemming, T.; Pichler, T.; Knupfer, M.; Kalbác, M.; Dunsch, L.; Jost, O.; Silva, S. R. P.; Pompe, W. et al. Novel catalysts, room temperature, and the importance of oxygen for the synthesis of single-walled carbon nanotubes. Nano Lett. 2005, 5, 1209–1215.

    Article  Google Scholar 

  6. Liu, H. T.; Liu, Y. Q.; Zhu, D. B. Chemical doping of graphene. J. Mater. Chem. 2011, 21, 3335–3345.

    Article  CAS  Google Scholar 

  7. Guo, B. D.; Fang, L.; Zhang, B. H.; Gong, J. R. Graphene doping: A review. Insciences J. 2011, 1, 80–89.

    Article  CAS  Google Scholar 

  8. Gao, G. D.; Liu, D. D.; Tang, S. C.; Huang, C.; He, M. C.; Guo, Y.; Sun, X. D.; Gao, B. Heat-initiated chemical functionalization of graphene. Sci. Rep. 2016, 6, 20034.

    Article  CAS  Google Scholar 

  9. Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214.

    Article  CAS  Google Scholar 

  10. Li, B. J.; Cao, H. Q.; Shao, J.; Qu, M. Z.; Warner, J. H. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J. Mater. Chem. 2011, 21, 5069–5075.

    Article  CAS  Google Scholar 

  11. Yang, L. G.; Wang, L. Z.; Xing, M. Y.; Lei, J. Y.; Zhang, J. L. Silica nanocrystal/graphene composite with improved photoelectric and photocatalytic performance. Appl. Catal. B: Environ. 2016, 180, 106–112.

    Article  CAS  Google Scholar 

  12. Kim, K. N.; Pham, V. P.; Yeom, G. Y. Chlorine radical doping of a few layer graphene with low damage. ECS J. Solid State Sci. Technol. 2015, 4, N5095–N5097.

    Article  CAS  Google Scholar 

  13. Hasan, M.; Meiou, W.; Yulian, L.; Ullah, S.; Ta, H. Q.; Zhao, L.; Mendes, R. G.; Malik, Z. P.; Ahmad, N. M.; Liu, Z. F. et al. Direct chemical vapor deposition synthesis of large area single-layer brominated graphene. RSC Adv. 2019, 9, 13527–13532.

    Article  CAS  Google Scholar 

  14. Granzier-Nakajima, T.; Fujisawa, K.; Anil, V.; Terrones, M.; Yeh, Y. T. Controlling nitrogen doping in graphene with atomic precision: Synthesis and characterization. Nanomaterials 2019, 9, 425.

    Article  CAS  Google Scholar 

  15. Muñoz-Sandoval, E.; Fajardo-Díaz, J. L.; Sánchez-Salas, R.; Cortés-López, A. J.; López-Urías, F. Two sprayer CVD synthesis of nitrogen-doped carbon sponge-type nanomaterials. Sci. Rep. 2018, 8, 2983.

    Article  Google Scholar 

  16. Hasan, M.; Wang, M. O.; Liu, Y. L.; Ta, H. Q.; Zhao, L.; Mendes, R. G.; Oswald, S.; Akhter, Z.; Malik, Z. P.; Ahmad, N. M. Low pressure chemical vapor deposition synthesis of large area hetero-doped mono-and few-layer graphene with nitrogen and oxygen species. Mater. Res. Express 2019, 6, 055604.

    Article  CAS  Google Scholar 

  17. Ito, Y.; Shen, Y.; Hojo, D.; Itagaki, Y.; Fujita, T.; Chen, L. H.; Aida, T.; Tang, Z.; Adschiri, T.; Chen, M. W. Correlation between chemical dopants and topological defects in catalytically active nanoporous graphene. Adv. Mater. 2016, 28, 10644–10651.

    Article  CAS  Google Scholar 

  18. Jiang, Q. G.; Ao, Z. M.; Jiang, Q. First principles study on the hydrophilic and conductive graphene doped with Al atoms. Phys. Chem. Chem. Phys. 2013, 15, 10859–10865.

    Article  CAS  Google Scholar 

  19. Huang, K. P.; Chi, Y. W. Metal-doped graphene and growth method of the same. U.S. Patent 2017/0263940 A1, Seotember 14, 2017.

  20. Zhao, W.; Meng, Q. Y. Adsorption of methane on pristine and Al-doped graphene: A comparative study via first-principles calculation. Adv. Mater. Res. 2013, 602–604, 870–873.

    Google Scholar 

  21. Rad, A. S.; Foukolaei, V. P. Density functional study of Al-doped graphene nanostructure towards adsorption of CO, CO2 and H2O. Synth. Met. 2015, 210, 171–178.

    Article  Google Scholar 

  22. Varghese, S. S.; Swaminathan, S.; Singh, K. K.; Mittal, V. Ab initio study on gas sensing properties of group III (B, Al and Ga) doped graphene. Comput. Condens. Matter 2016, 9, 40–55.

    Article  Google Scholar 

  23. Qin, Y.; Wu, H. H.; Zhang, L. A.; Zhou, X.; Bu, Y. F.; Zhang, W.; Chu, F. Q.; Li, Y. T.; Kong, Y.; Zhang, Q. B. et al. Aluminum and Nitrogen codoped graphene: Highly active and durable electrocatalyst for oxygen reduction reaction. ACS Catal. 2019, 9, 610–619.

    Article  CAS  Google Scholar 

  24. Ullah, S.; Denis, P. A.; Sato, F. Triple-doped monolayer graphene with boron, nitrogen, aluminum, silicon, phosphorus, and sulfur. ChemPhysChem 2017, 18, 1864–1873.

    Article  CAS  Google Scholar 

  25. Peyghan, A. A.; Noei, M.; Tabar, M. B. A large gap opening of graphene induced by the adsorption of CO on the Al-doped site. J. Mol. Model. 2013, 19, 3007–3014.

    Article  CAS  Google Scholar 

  26. Dai, X. S.; Shen, T.; Feng, Y.; Liu, H. C. Structure, electronic and optical properties of Al, Si, P doped penta-graphene: A first-principles study. Phys. B: Condens. Matter 2019, 574, 411660.

    Article  CAS  Google Scholar 

  27. Chi, M.; Zhao, Y. P. Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: A first principle study. Comput. Mater. Sci. 2009, 46, 1085–1090.

    Article  CAS  Google Scholar 

  28. Lv, Y. A.; Zhuang, G. L.; Wang, J. G.; Jia, Y. B.; Xie, Q. Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field. Phys. Chem. Chem. Phys. 2011, 13, 12472–12477.

    Article  CAS  Google Scholar 

  29. Denis, P. A. Mono and dual doped monolayer graphene with aluminum, silicon, phosphorus and sulfur. Comput. Theor. Chem. 2016, 1097, 40–47.

    Article  CAS  Google Scholar 

  30. Fauzi, F. B.; Ismail, E.; Ani, M. H.; Bakar, S. N. S. A.; Mohamed, M. A.; Majlis, B. Y.; Din, M. F. M.; Abid, M. A. A. M. A critical review of the effects of fluid dynamics on graphene growth in atmospheric pressure chemical vapor deposition. J. Mater. Res. 2018, 33, 1088–1108.

    Article  CAS  Google Scholar 

  31. Rümmeli, M. H.; Gorantla, S.; Bachmatiuk, A.; Phieler, J.; Geißler, N.; Ibrahim, I.; Pang, J. B.; Eckert, J. On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem. Mater. 2013, 25, 4861–4866.

    Article  Google Scholar 

  32. Wang, H.; Zhou, Y.; Wu, D.; Liao, L.; Zhao, S. L.; Peng, H. L.; Liu, Z. F. Synthesis of boron — doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 2013, 9, 1316–1320.

    Article  CAS  Google Scholar 

  33. Vlassiouk, I.; Smirnov, S.; Regmi, M.; Surwade, S. P.; Srivastava, N.; Feenstra, R.; Eres, G.; Parish, C.; Lavrik, N.; Datskos, P. et al. Graphene nucleation density on copper: Fundamental role of background pressure. J. Phys. Chem. C 2013, 117, 18919–18926.

    Article  CAS  Google Scholar 

  34. Wu, T. L.; Yeh, C. H.; Hsiao, W. T.; Huang, P. Y.; Huang, M. J.; Chiang, Y. H.; Cheng, C. H.; Liu, R. S.; Chiu, P. W. High-performance organic light-emitting diode with substitutionally boron-doped graphene anode. ACS Appl. Mater. Interfaces 2017, 9, 14998–15004.

    Article  CAS  Google Scholar 

  35. Beams, R.; Cançado, L. G.; Novotny, L. Raman characterization of defects and dopants in graphene. J. Phys.: Condens. Matter 2015, 27, 083002.

    CAS  Google Scholar 

  36. Comanescu, F.; Istrate, A.; Purica, M. Assessing by Raman spectroscopy the quality of CVD graphene transferred on oxidized silicon and quartz substrates. Rom. J. Inf. Sci. Tech. 2019, 22, 30–40.

    Google Scholar 

  37. Rümmeli, M. H.; Bachmatiuk, A.; Scott, A.; Börrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J. H.; Cuniberti, G.; Büchner, B. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 2010, 4, 4206–4210.

    Article  Google Scholar 

  38. Vecera, P.; Eigler, S.; Koleśnik-Gray, M.; Krstić, V.; Vierck, A.; Maultzsch, J.; Schäfer, R. A.; Hauke, F.; Hirsch, A. Degree of functionalisation dependence of individual Raman intensities in covalent graphene derivatives. Sci. Rep. 2017, 7, 45165.

    Article  CAS  Google Scholar 

  39. Lv, R. T.; Li, Q.; Botello-Méndez, A. R.; Hayashi, T.; Wang, B.; Berkdemir, A.; Hao, Q. Z.; Elías, A. L.; Cruz-Silva, R.; Gutiérrez, H. R. et al. Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep. 2012, 2, 586.

    Article  Google Scholar 

  40. Ullah, S.; Shi, Q. T.; Zhou, J. H.; Yang, X. Q.; Ta, H. Q.; Hasan, M.; Ahmad, N. M.; Fu, L.; Bachmatiuk, A.; Rümmeli, M. H. Advances and trends in chemically doped graphene. Adv. Mater. Interfaces 2020, 7, 2000999.

    Article  CAS  Google Scholar 

  41. Lv, R. T.; Chen, G. G.; Li, Q.; McCreary, A.; Botello-Méndez, A.; Morozov, S. V.; Liang, L. B.; Declerck, X.; Perea-López, N.; Cullen, D. A. et al. Ultrasensitive gas detection of large-area boron-doped graphene. Proc. Natl. Acad. Sci. USA 2015, 112, 14527–14532.

    Article  CAS  Google Scholar 

  42. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  CAS  Google Scholar 

  43. Zafar, Z.; Ni, Z. H.; Wu, X.; Shi, Z. X.; Nan, H. Y.; Bai, J.; Sun, L. T. Evolution of Raman spectra in nitrogen doped graphene. Carbon 2013, 61, 57–62.

    Article  CAS  Google Scholar 

  44. Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.

    Article  CAS  Google Scholar 

  45. Ta, H. Q.; Perello, D. J.; Duong, D. L.; Han, G. H.; Gorantla, S.; Nguyen, V. L.; Bachmatiuk, A.; Rotkin, S. V.; Lee, Y. H.; Rümmeli, M. H. Stranski-krastanov and volmer-weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 2016, 16, 6403–6410.

    Article  CAS  Google Scholar 

  46. Vengatesh, P.; Kulandainathan, M. A. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance. ACS Appl. Mater. Interfaces 2015, 7, 1516–1526.

    Article  CAS  Google Scholar 

  47. Liu, F. C.; Dong, P.; Lu, W.; Sun, K. On formation of Al-O-C bonds at aluminum/polyamide joint interface. Appl. Surf. Sci 2019, 466, 202–209.

    Article  CAS  Google Scholar 

  48. Rancourt, J. D.; Hollenhead, J. B.; Taylor, L. T. Chemistry of the interface between aluminum and polyester films. J. Adhes. 1993, 40, 267–285.

    Article  CAS  Google Scholar 

  49. Zhang, G. A; Yan, P. X.; Wang, P.; Chen, Y. M.; Zhang, J. Y. The preparation and mechanical properties of Al-containing a-C:H thin films. J. Phys. D: Appl. Phys. 2007, 40, 6748.

    Article  CAS  Google Scholar 

  50. Kong, C. C.; Guo, P.; Sun, L. L.; Zhou, Y.; Liang, Y. X.; Li, X. W.; Ke, P. L.; Lee, K. R.; Wang, A. Y. Tribological mechanism of diamond-like carbon films induced by Ti/Al co-doping. Surf. Coat. Technol. 2018, 342, 167–177.

    Article  CAS  Google Scholar 

  51. Hayez, V.; Franquet, A.; Hubin, A.; Terryn, H. XPS study of the atmospheric corrosion of copper alloys of archaeological interest. Surf. Interface Anal. 2004, 36, 876–879.

    Article  CAS  Google Scholar 

  52. Nasrollahzadeh, M.; Jaleh, B.; Jabbari, A. Synthesis, characterization and catalytic activity of graphene oxide/ZnO nanocomposites. RSC Adv. 2014, 4, 36713–36720.

    Article  CAS  Google Scholar 

  53. Trivedi, M. K.; Tallapragada, R. M.; Branton, A.; Trivedi, D.; Nayak, G.; Latiyal, O.; Jana, S. Characterization of physical and structural properties of aluminium carbide powder: Impact of biofield treatment. J. Aeronaut. Aerosp. Eng 2015, 4, 1000142.

    Article  Google Scholar 

  54. Yate, L.; Caicedo, J. C.; Macias, A. H.; Espinoza-Beltrán, F. J.; Zambrano, G.; Muñoz-Saldaña, J.; Prieto, P. Composition and mechanical properties of AlC, AlN and AlCN thin films obtained by r.f. magnetron sputtering. Surf. Coat. Technol. 2009, 203, 1904–1907.

    Article  CAS  Google Scholar 

  55. Warner, J. H.; Schäffel, F.; Bachmatiuk, A.; Rümmeli, M. H. Graphene: Fundamentals and Emergent Applications; Elsevier: Amsterdam, 2012.

    Google Scholar 

  56. Markevich, A. V.; Baldoni, M.; Warner, J. H.; Kirkland, A. I.; Besley, E. Dynamic behavior of single Fe atoms embedded in graphene. J. Phys. Chem. C 2016, 120, 21998–22003.

    Article  CAS  Google Scholar 

  57. Denis, P. A.; Iribarne, F. The effect of the dopant nature on the reactivity, interlayer bonding and electronic properties of dual doped bilayer graphene. Phys. Chem. Chem. Phys. 2016, 18, 24693–24703.

    Article  CAS  Google Scholar 

  58. Mishra, A. K.; Ramaprabhu, S. Carbon dioxide adsorption in graphene sheets. AIP Adv. 2011, 1, 032152.

    Article  Google Scholar 

  59. Jankovský, O.; Šimek, P.; Klimová, K.; Sedmidubský, D.; Matějková, S.; Pumera, M.; Sofer, Z. Towards graphene bromide: Bromination of graphite oxide. Nanoscale 2014, 6, 6065–6074.

    Article  Google Scholar 

  60. He, J. J.; To, J.; Mei, J. G.; Bao, Z. N.; Wilcox, J. Facile synthesis of nitrogen-doped porous carbon for selective CO2 capture. Energy Proced. 2014, 63, 2144–2151.

    Article  CAS  Google Scholar 

  61. Li, W. D.; Yang, H. Y.; Jiang, X.; Liu, Q. Highly selective CO2 adsorption of ZnO based N-doped reduced graphene oxide porous nanomaterial. Appl. Surf. Sci. 2016, 360, 143–147.

    Article  CAS  Google Scholar 

  62. Kemp, K. C.; Chandra, V.; Saleh, M.; Kim, K. S. Reversible CO2 adsorption by an activated nitrogen doped graphene/polyaniline material. Nanotechnology 2013, 24, 235703.

    Article  Google Scholar 

  63. Oh, J.; Mo, Y. H.; Le, V. D.; Lee, S.; Han, J.; Park, G.; Kim, Y. H.; Park, S. E.; Park, S. Borane-modified graphene-based materials as CO2 adsorbents. Carbon 2014, 79, 450–456.

    Article  CAS  Google Scholar 

  64. Chowdhury, S.; Parshetti, G. K.; Balasubramanian, R. Post-combustion CO2 capture using mesoporous TiO2/graphene oxide nanocomposites. Chem. Eng. J. 2015, 263, 374–384.

    Article  CAS  Google Scholar 

  65. Cao, Y.; Zhao, Y. X.; Lv, Z. J.; Song, F. J.; Zhong, Q. Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites. J. Ind. Eng. Chem. 2015, 27, 102–107.

    Article  CAS  Google Scholar 

  66. Rodríguez-García, S.; Santiago, R.; López-Díaz, D.; Merchán, M. D.; Velázquez, M. M.; Fierro, J. L. G.; Palomar, J. Role of the structure of graphene oxide sheets on the CO2 adsorption properties of nanocomposites based on graphene oxide and polyaniline or Fe3O4-nanoparticles. ACS Sustainable Chem. Eng. 2019, 7, 12464–12473.

    Google Scholar 

  67. Varghese, A. M.; Reddy, K. S. K.; Singh, S.; Karanikolos, G. N. Performance enhancement of CO2 capture adsorbents by UV treatment: The case of self-supported graphene oxide foam. Chem. Eng. J. 2020, 386, 124022.

    Article  CAS  Google Scholar 

  68. Stanly, S.; Jelmy, E. J.; Nair, C. P. R.; John, H. Carbon dioxide adsorption studies on modified montmorillonite clay/reduced graphene oxide hybrids at low pressure. J. Environ. Chem. Eng. 2019, 7, 103344.

    Article  CAS  Google Scholar 

  69. Zhou, D.; Cheng, Q. Y.; Cui, Y.; Wang, T.; Li, X. X.; Han, B. H. Graphene-terpyridine complex hybrid porous material for carbon dioxide adsorption. Carbon 2014, 66, 592–598.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, No. 52071225), the National Science Center, and the Czech Republic under the ERDF program “Institute of Environmental Technology—Excellent Research” (No. CZ.02.1.01/0.0/0.0/16_019/0000853). M. H. R. and L. F. thank the Sino-German Research Institute for support (Project No. GZ 1400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Rümmeli.

Electronic supplementary material

12274_2021_3655_MOESM1_ESM.pdf

Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, S., Liu, Y., Hasan, M. et al. Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family. Nano Res. 15, 1310–1318 (2022). https://doi.org/10.1007/s12274-021-3655-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3655-x

Keywords

Navigation