Skip to main content
Log in

A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

For human beings of different ages and physical abilities, the inherent balance control system is ubiquitous and active to prevent falling, especially in motion states. A hybridized electromagnetic-triboelectric nanogenerator (HETNG) is prepared to harvest biomechanical energy during human balance control processes and achieve significant monitoring functions. The HETNG is composed of a symmetrical pendulum structure and a cylinder magnet rolling inside. Four coils are divided into two groups which form into two electromagnetic generators (EMGs). Besides, two spatial electrodes attached to the inner wall constitute a freestanding mode triboelectric nanogenerator (TENG). With a rectification circuit, the HETNG presents a high output power with a peak value of 0.55 W at a load of 160 Ω. Along with human balance control processes during walking, the HETNG can harvest biomechanical energy at different positions on the trunk. Moreover, the HETNG applied in artificial limb has been preliminarily simulated with the positions on thigh and foot, for monitoring the actions of squat and stand up, and lifting the leg up and down. For the elder that walks slowly with a walking aid, the HETNG equipped on the walking aid can help to record the motions of forwarding and unexpected falling, which is useful for calling for help. This work shows the potential of biomechanical energy-driven HETNG for powering portable electronics and monitoring human motions, also shows significant concerns to people lacked action capability or disabled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ribière, P.; Grugeon, S.; Morcrette, M.; Boyanov, S.; Laruelle, S.; Marlair, G. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ. Sci. 2012, 5, 5271–5280.

    Article  Google Scholar 

  2. Halim, M. A.; Cho, H.; Park, J. Y. Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Convers. Manag. 2015, 106, 393–404.

    Article  Google Scholar 

  3. Saha, C. R.; O’Donnell, T.; Wang, N.; McCloskey, P. Electromagnetic generator for harvesting energy from human motion. Sensor. Actuat. A: Phys. 2008, 147, 248–253.

    Article  CAS  Google Scholar 

  4. Pillatsch, P.; Yeatman, E. M.; Holmes, A. S. A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sensor Actuat. A: Phys. 2014, 206, 178–185.

    Article  CAS  Google Scholar 

  5. Siddiqui, S.; Lee, H. B.; Kim, D. I.; Duy, L. T.; Hanif, A.; Lee, N. E. An omnidirectionally stretchable piezoelectric nanogenerator based on hybrid nanofibers and carbon electrodes for multimodal straining and human kinematics energy harvesting. Adv. Energy Mater. 2018, 8, 1701520.

    Article  CAS  Google Scholar 

  6. Wen, F.; Wang, H.; He, T. Y. Y.; Shi, Q. F.; Sun, Z. D.; Zhu, M. L.; Zhang, Z. X.; Cao, Z. G.; Dai, Y. B.; Zhang, T. et al. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 2020, 67, 104266.

    Article  CAS  Google Scholar 

  7. Zou, Y. J.; Raveendran, V.; Chen, J. Wearable triboelectric nano-generators for biomechanical energy harvesting. Nano Energy 2020, 77, 105303.

    Article  CAS  Google Scholar 

  8. Zou, Y. J.; Xu, J.; Fang, Y. S.; Zhao, X.; Zhou, Y. H.; Chen, J. A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy 2021, 83, 105845.

    Article  CAS  Google Scholar 

  9. Zhou, Z. H.; Weng, L.; Tat, T.; Libanori, A.; Lin, Z. M.; Ge, L. J.; Yang, J.; Chen, J. Smart insole for robust wearable biomechanical energy harvesting in harsh environments. ACS Nano 2020, 14, 14126–14133.

    Article  CAS  Google Scholar 

  10. Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.

    Article  CAS  Google Scholar 

  11. Zhu, J. X.; Zhu, M. L.; Shi, Q. F.; Wen, F.; Liu, L.; Dong, B. W.; Haroun, A.; Yang, Y. Q.; Vachon, P.; Guo, X. et al. Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2020, 2, e12058.

    CAS  Google Scholar 

  12. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  CAS  Google Scholar 

  13. Wen, F.; Sun, Z. D.; He, T. Y. Y.; Shi, Q. F.; Zhu, M. L.; Zhang, Z. X.; Li, L. H.; Zhang, T.; Lee, C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 2020, 7, 2000261.

    Article  CAS  Google Scholar 

  14. Pu, X. J.; Guo, H. Y.; Tang, Q.; Chen, J.; Feng, L.; Liu, G. L.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor. Nano Energy 2018, 54, 453–460.

    Article  CAS  Google Scholar 

  15. Shi, Q. F.; Zhang, Z. X.; He, T. Y. Y.; Sun, Z. D.; Wang, B. J.; Feng, Y. Q.; Shan, X. C.; Salam, B.; Lee, C. Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 2020, 11, 4609.

    Article  CAS  Google Scholar 

  16. Qin, K.; Chen, C.; Pu, X. J.; Tang, Q.; He, W. C.; Liu, Y. K.; Zeng, Q. X.; Liu, G. L.; Guo, H. Y.; Hu, C. G. Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 2021, 13, 51.

    Article  CAS  Google Scholar 

  17. Zou, Y. J.; Libanori, A.; Xu, J.; Nashalian, A.; Chen, J. Triboelectric nanogenerator enabled smart shoes for wearable electricity generation. Research 2020, 2020, 7158953.

    Article  CAS  Google Scholar 

  18. Liu, L.; Shi, Q. F.; Ho, J. S.; Lee, C. Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy 2019, 66, 104167.

    Article  CAS  Google Scholar 

  19. Liu, L.; Shi, Q. F.; Lee, C. A novel hybridized blue energy harvester aiming at all-weather IoT applications. Nano Energy 2020, 76, 105052.

    Article  CAS  Google Scholar 

  20. Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.

    Article  CAS  Google Scholar 

  21. Yang, Y.; Zhang, H. L.; Liu, R. Y.; Wen, X. N.; Hou, T. C.; Wang, Z. L. Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 2013, 3, 1563–1568.

    Article  CAS  Google Scholar 

  22. Shao, H. Y.; Cheng, P.; Chen, R. X.; Xie, L. J.; Sun, N.; Shen, Q. Q.; Chen, X. P.; Zhu, Q. Q.; Zhang, Y.; Liu, Y. et al. Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 2018, 10, 54.

    Article  CAS  Google Scholar 

  23. Zhang, K. W.; Wang, Y. H.; Yang, Y. Structure design and performance of hybridized nanogenerators. Adv. Funct. Mater. 2019, 29, 1806435.

    Article  CAS  Google Scholar 

  24. Chen, X. X.; Ren, Z. Y.; Han, M. D.; Wan, J.; Zhang, H. X. Hybrid energy cells based on triboelectric nanogenerator: From principle to system. Nano Energy 2020, 75, 104980.

    Article  CAS  Google Scholar 

  25. Liu, H. C.; Fu, H. L.; Sun, L. N.; Lee, C.; Yeatman, E. M. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renew. Sust. Energ. Rev. 2021, 137, 110473.

    Article  Google Scholar 

  26. Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

    Article  CAS  Google Scholar 

  27. Zhu, M. L.; Yi, Z. R.; Yang, B.; Lee, C. Making use of nanoenergy from human - Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021, 36, 101016.

    Article  Google Scholar 

  28. Zhang, K. W.; Wang, X.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging bio-mechanical energy for sustainably powering wearable electronics. ACS Nano 2015, 9, 3521–3529.

    Article  CAS  Google Scholar 

  29. Liu, L.; Tang, W.; Deng, C. R.; Chen, B. D.; Han, K.; Zhong, W.; Wang, Z. L. Self-powered versatile shoes based on hybrid nanogenerators. Nano Res. 2018, 11, 3972–3978.

    Article  CAS  Google Scholar 

  30. Quan, T.; Wang, X.; Wang, Z. L.; Yang, Y. Hybridized electromagnetic-triboelectric nanogenerator for a self-powered electronic watch. ACS Nano 2015, 9, 12301–12310.

    Article  CAS  Google Scholar 

  31. Salauddin, M.; Toyabur, R. M.; Maharjan, P.; Rasel, M. S.; Kim, J. W.; Cho, H.; Park, J. Y. Miniaturized springless hybrid nanogenerator for powering portable and wearable electronic devices from human-body-induced vibration. Nano Energy 2018, 51, 61–72.

    Article  CAS  Google Scholar 

  32. Seol, M. L.; Han, J. W.; Park, S. J.; Jeon, S. B.; Choi, Y. K. Hybrid energy harvester with simultaneous triboelectric and electromagnetic generation from an embedded floating oscillator in a single package. Nano Energy 2016, 23, 50–59.

    Article  CAS  Google Scholar 

  33. Salauddin, M.; Toyabur, R. M.; Maharjan, P.; Park, J. Y. High performance human-induced vibration driven hybrid energy harvester for powering portable electronics. Nano Energy 2018, 45, 236–246.

    Article  CAS  Google Scholar 

  34. Maharjan, P.; Bhatta, T.; Cho, H.; Hui, X.; Park, C.; Yoon, S.; Salauddin, M.; Rahman, M. T.; Rana, S. M. S.; Park, J. Y. A fully functional universal self-chargeable power module for portable/wearable electronics and self-powered IoT applications. Adv. Energy Mater. 2020, 10, 2002782.

    Article  CAS  Google Scholar 

  35. Quan, T.; Wu, Y. C.; Yang, Y. Hybrid electromagnetic-triboelectric nanogenerator for harvesting vibration energy. Nano Res. 2015, 8, 3272–3280.

    Article  CAS  Google Scholar 

  36. Rahman, M. T.; Rana, S. M. S.; Salauddin, M.; Maharjan, P.; Bhatta, T.; Park, J. Y. Biomechanical energy-driven hybridized generator as a universal portable power source for smart/wearable electronics. Adv. Energy Mater. 2020, 10, 1903663.

    Article  CAS  Google Scholar 

  37. Maharjan, P.; Cho, H.; Rasel, M. S.; Salauddin, M.; Park, J. Y. A fully enclosed, 3D printed, hybridized nanogenerator with flexible flux concentrator for harvesting diverse human biomechanical energy. Nano Energy 2018, 53, 213–224.

    Article  CAS  Google Scholar 

  38. Maharjan, P.; Toyabur, R. M.; Park, J. Y. A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications. Nano Energy 2018, 46, 383–395.

    Article  CAS  Google Scholar 

  39. Yan, C.; Gao, Y. Y.; Zhao, S. L.; Zhang, S. L.; Zhou, Y. H.; Deng, W. L.; Li, Z. W.; Jiang, G.; Jin, L.; Tian, G. et al. A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy 2020, 67, 104235.

    Article  CAS  Google Scholar 

  40. Jiang, D. J.; Ouyang, H.; Shi, B. J.; Zou, Y.; Tan, P. C.; Qu, X. C.; Chao, S. Y.; Xi, Y.; Zhao, C. C.; Fan, Y. B. et al. A wearable noncontact free-rotating hybrid nanogenerator for self-powered electronics. InfoMat 2020, 2, 1191–1200.

    Article  CAS  Google Scholar 

  41. Quan, T.; Yang, Y. Fully enclosed hybrid electromagnetic-triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 2016, 9, 2226–2233.

    Article  Google Scholar 

  42. Ren, X. H.; Fan, H. Q.; Wang, C.; Ma, J. W.; Lei, S. H.; Zhao, Y. W.; Li, H.; Zhao, N. S. Magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy. Nano Energy 2017, 35, 233–241.

    Article  CAS  Google Scholar 

  43. Chung, J.; Yong, H.; Moon, H.; Duong, Q. V.; Choi, S. T.; Kim, D.; Lee, S. Hand-driven gyroscopic hybrid nanogenerator for recharging portable devices. Adv. Sci. 2018, 5, 1801054.

    Article  Google Scholar 

  44. Hou, C.; Chen, T.; Li, Y. F.; Huang, M. J.; Shi, Q. F.; Liu, H. C.; Sun, L. N.; Lee, C. A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy 2019, 63, 103871.

    Article  CAS  Google Scholar 

  45. Chen, X.; Gao, L. X.; Chen, J. F.; Lu, S.; Zhou, H.; Wang, T. T.; Wang, A. B.; Zhang, Z. F.; Guo, S. F.; Mu, X. J. et al. A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 2020, 69, 104440.

    Article  CAS  Google Scholar 

  46. Feng, Y. W.; Liang, X.; An, J.; Jiang, T.; Wang, Z. L. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625.

    Article  CAS  Google Scholar 

  47. Bauby, C. E.; Kuo, A. D. Active control of lateral balance in human walking. J. Biomech. 2000, 33, 1433–1440.

    Article  CAS  Google Scholar 

  48. Loram, I. D.; Lakie, M. Human balancing of an inverted pendulum: Position control by small, ballistic-like, throw and catch movements. J. Physiol. 2002, 540, 1111–1124.

    Article  CAS  Google Scholar 

  49. Schedler, S.; Kiss, R.; Muehlbauer, T. Age and sex differences in human balance performance from 6–18 years of age: A systematic review and meta-analysis. PLoS One 2019, 14, e0214434.

    Article  CAS  Google Scholar 

  50. Le Huec, J. C.; Saddiki, R.; Franke, J.; Rigal, J.; Aunoble, S. Equilibrium of the human body and the gravity line: The basics. Eur. Spine J. 2011, 20, 558–563.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported the National Key Research and Development Program of China (No. 2019YFB2004800, Project No. R-2020-S-002) at NUSRI, Suzhou, China; and Singapore-Poland Joint Grant (R-263-000-C91-305) “Chip-Scale MEMS MicroSpectrometer for Monitoring Harsh Industrial Gases” by Agency for Science, Technology and Research (A*STAR), Singapore and NAWA “Academic International Partnerships of Wroclaw University of Science and Technology” programmed by Polish National Agency for Academic Exchange Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengkuo Lee.

Electronic Supplementary Material

Supplementary material, approximately 8.64 MB.

Supplementary material, approximately 16.9 MB.

Supplementary material, approximately 7.54 MB.

Supplementary material, approximately 4.49 MB.

12274_2021_3540_MOESM5_ESM.pdf

A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Shi, Q. & Lee, C. A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res. 14, 4227–4235 (2021). https://doi.org/10.1007/s12274-021-3540-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3540-7

Keywords

Navigation