Skip to main content
Log in

Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The miniaturization and high integration of devices demand significant thermal management materials. Current technologies for the thermal management of electronics show some limitations in the case of multiple chip arrays. A device in multiple chip array is affected by heat from adjacent devices, along with thermal conductive composite. To address this problem, we present a nano composite of aligned boron nitride (BN) nanosheet islands with porous polydimethylsiloxane (PDMS) foam to have mechanical stability and non-thermal interference. The islands of tetrahedrally-structured BN in the composite have a high thermal conductivity of 1.219 W·m−1·K−1 in the through-plane direction (11.234 W·m−1·K−1 in the in-plane direction) with 16 wt.% loading of BN. On the other hand, porous PDMS foam has a low thermal conductivity of 0.0328 W·m−1·K−1 in the through-plane direction at 70% porosity. Heat pathways are then formed only in the structured BN islands of the composite. The porous PDMS foam can be applied as a thermal barrier between structured BN islands to inhibit thermal interference in multiple device arrays. Furthermore, this composite can maintain selective thermal dissipation performance with 70% tensile strain. Another beauty of the work is that it could have guided heat dissipation by assembling of multiple layers which have high vertical thermal conductive islands, while inhibiting thermal interference. The selective heat dissipating composite can be applied as a heatsink for multiple chip arrays electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694.

    Article  CAS  Google Scholar 

  2. Yu, A. P.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C. Graphite nanoplatelet-epoxy composite thermal interface materials. J. Phys. Chem. C 2007, 111, 7565–7569.

    Article  CAS  Google Scholar 

  3. Meng, X.; Chen, T. X.; Li, Y.; Liu, S. Y.; Pan, H.; Ma, Y. N.; Chen, Z. X.; Zhang, Y. P.; Zhu, S. M. Assembly of carbon nanodots in graphene-based composite for flexible electro-thermal heater with ultrahigh efficiency. Nano Res. 2019, 12, 2498–2508.

    Article  CAS  Google Scholar 

  4. Kargar, F.; Barani, Z.; Balinskiy, M.; Magana, A. S.; Lewis, J. S.; Balandin, A. A. Dual-functional graphene composites for electromagnetic shielding and thermal management. Adv. Electron. Mater. 2019, 5, 1800558.

    Article  CAS  Google Scholar 

  5. Fu, Y. F.; Hansson, J.; Liu, Y.; Chen, S. J.; Zehri, A.; Samani, M. K.; Wang, N.; Ni, Y. X.; Zhang, Y.; Zhang, Z. B. et al. Graphene related materials for thermal management. 2D Mater. 2019, 7, 012001.

    Article  CAS  Google Scholar 

  6. Mamunya, Y. P.; Davydenko, V. V.; Pissis, P.; Lebedev, E. V. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 2002, 38, 1887–1897.

    Article  CAS  Google Scholar 

  7. Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Kinloch, I. A.; Bauhofer, W.; Windle, A. H.; Schulte, K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006, 47, 2036–2045.

    Article  CAS  Google Scholar 

  8. Zhi, C. Y.; Bando, Y.; Terao, T.; Tang, C. C.; Kuwahara, H.; Golberg, D. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv. Funct. Mater. 2009, 19, 1857–1862.

    Article  CAS  Google Scholar 

  9. Lewis, J. S.; Barani, Z.; Magana, A. S.; Kargar, F.; Balandin, A. A. Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Mater. Res. Express 2019, 6, 085325.

    Article  CAS  Google Scholar 

  10. Hong, H.; Kim, J. U.; Kim, T. I. Effective assembly of nano-ceramic materials for high and anisotropic thermal conductivity in a polymer composite. Polymers 2017, 9, 413.

    Article  CAS  Google Scholar 

  11. Li, S.; Zhang, Y. M.; Han, J. C.; Zhou, Y. F. Fabrication and characterization of SiC whisker reinforced reaction bonded SiC composite. Ceram. Int. 2013, 39, 449–455.

    Article  CAS  Google Scholar 

  12. Kim, J.; Kwon, J.; Lee, D.; Kim, M.; Han, H. Heat dissipation properties of polyimide nanocomposite films. Korean J. Chem. Eng. 2016, 33, 3245–3250.

    Article  CAS  Google Scholar 

  13. Yang, Y.; Ding, S.; Araki, T.; Jiu, J. T.; Sugahara, T.; Wang, J.; Vanfleteren, J.; Sekitani, T.; Suganuma, K. Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Res. 2016, 9, 401–414.

    Article  CAS  Google Scholar 

  14. Wu, M. Y.; Zhao, J.; Curley, N. J.; Chang, T. H.; Ma, Z. Q.; Arnold, M. S. Biaxially stretchable carbon nanotube transistors. J. Appl. Phys. 2017, 122, 124901.

    Article  CAS  Google Scholar 

  15. Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926.

    Article  CAS  Google Scholar 

  16. Qi, G. Q.; Yang, J.; Bao, R. Y.; Xia, D. Y.; Cao, M.; Yang, W.; Yang, M. B.; Wei, D. C. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 2017, 10, 802–813.

    Article  CAS  Google Scholar 

  17. Chen, J.; Huang, X. Y.; Zhu, Y. K.; Jiang, P. K. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 2017, 27, 1604754.

    Article  CAS  Google Scholar 

  18. Wang, Y. L.; Xu, L. S.; Yang, Z.; Xie, H.; Jiang, P. Q.; Dai, J. Q.; Luo, W.; Yao, Y. G.; Hitz, E.; Yang, R. G. et al. High temperature thermal management with boron nitride nanosheets. Nanoscale 2018, 10, 167–173.

    Article  CAS  Google Scholar 

  19. Maqbool, M.; Guo, H. C.; Bashir, A.; Usman, A.; Abid, A. Y.; He, G. S.; Ren, Y. J.; Ali, Z.; Bai, S. L. Enhancing through-plane thermal conductivity of fluoropolymer composite by developing in situ nano-urethane linkage at graphene-graphene interface. Nano Res. 2020, 13, 2741–2748.

    Article  CAS  Google Scholar 

  20. Yao, Y. M.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 2018, 14, 1704044.

    Article  CAS  Google Scholar 

  21. Kim, K.; Kim, J. Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content. Compos. Part B 2016, 93, 67–74.

    Article  CAS  Google Scholar 

  22. Wu, Z. H.; Xu, C.; Ma, C. Q.; Liu, Z. B.; Cheng, H. M.; Ren, W. C. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 2019, 31, 1900199.

    Article  CAS  Google Scholar 

  23. Gan, W. T.; Chen, C. J.; Wang, Z. Y.; Pei, Y.; Ping, W. W.; Xiao, S. L.; Dai, J. Q.; Yao, Y. G.; He, S. M.; Zhao, B. H. et al. Fire-resistant structural material enabled by an anisotropic thermally conductive hexagonal boron nitride coating. Adv. Funct. Mater. 2020, 30, 1909196.

    Article  CAS  Google Scholar 

  24. Hong, H.; Jung, Y. H.; Lee, J. S.; Jeong, C.; Kim, J. U.; Lee, S.; Ryu, H.; Kim, H.; Ma, Z. Q.; Kim, T. I. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1902575.

    Article  CAS  Google Scholar 

  25. Fujihara, T.; Cho, H. B.; Kanno, M.; Nakayama, T.; Suzuki, T.; Jiang, W. H.; Suematsu, H.; Niihara, K. Three-dimensional structural control and analysis of hexagonal boron nitride nanosheets assembly in nanocomposite films induced by electric field concentration. Jpn. J. Appl. Phys. 2014, 53, 02BD12.

    Article  CAS  Google Scholar 

  26. Lall, B. S.; Guenin, B. M.; Molnar, R. J. Methodology for thermal evaluation of multichip modules. IEEE Trans. Compon. Pack. Manuf. Technol. 1995, 18, 758.

    Article  Google Scholar 

  27. Lu, H. L.; Lu, Y. J.; Zhu, L. H.; Lin, Y.; Guo, Z. Q.; Liu, T.; Gao, Y. L.; Chen, G. L.; Chen, Z. Efficient measurement of thermal coupling effects on multichip light-emitting diodes. IEEE Trans. Power Electron. 2017, 32, 9280–9292.

    Article  Google Scholar 

  28. Colaco, A. M.; Kurian, C. P.; Kini, S. G.; Colaco, S. G.; Johny, C. Thermal characterization of multicolor LED luminaire. Microelectron. Reliab. 2017, 78, 379–388.

    Article  Google Scholar 

  29. Yoon, Y.; Hyeon, S.; Kim, D. R.; Lee, K. S. Minimizing thermal interference effects of multiple heat sources for effective cooling of power conversion electronics. Energy Convers. Manag. 2018, 174, 218–226.

    Article  Google Scholar 

  30. Mohanty, S. K.; Chen, Y. Y.; Yeh, P. H.; Horng, R. H. Thermal management of GaN-on-Si High electron Mobility transistor by copper filled Micro-trench Structure. Sci. Rep. 2019, 9, 19691.

    Article  CAS  Google Scholar 

  31. Li, L.; Fukui, A.; Wakejima, A. Bonding GaN on high thermal conductivity graphite composite with adequate interfacial thermal conductance for high power electronics applications. Appl. Phys. Lett. 2020, 116, 142105.

    Article  CAS  Google Scholar 

  32. Kim, T. H.; Choi, W. M.; Kim, D. H.; Meitl, M. A.; Menard, E.; Jiang, H. Q.; Carlisle, J. A.; Rogers, J. A. Printable, flexible, and stretchable forms of ultrananocrystalline diamond with applications in thermal management. Adv. Mater. 2008, 20, 2171–2176.

    Article  CAS  Google Scholar 

  33. Kim, J.; Shim, H. J.; Yang, J.; Choi, M. K.; Kim, D. C.; Kim, J.; Hyeon, T.; Kim, D. H. Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater. 2017, 29, 1700217.

    Article  CAS  Google Scholar 

  34. Min, Y. J.; Kang, K. H.; Kim, D. E. Development of polyimide films reinforced with boron nitride and boron nitride nanosheets for transparent flexible device applications. Nano Res. 2018, 11, 2366–2378.

    Article  CAS  Google Scholar 

  35. Kim, D. C.; Shim, H. J.; Lee, W.; Koo, J. H.; Kim, D. H. Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 2020, 32, 1902743.

    Article  CAS  Google Scholar 

  36. Zhang, H. L.; Lan, Y.; Qiu, S. Y.; Min, S.; Jang, H.; Park, J.; Gong, S. Q.; Ma, Z. Q. Flexible and Stretchable Microwave Electronics: Past, Present, and Future Perspective. Adv. Mater. Technol. 2021, 6, 2000759.

    Article  Google Scholar 

  37. Kargar, F.; Barani, Z.; Salgado, R.; Debnath, B.; Lewis, J. S.; Aytan, E.; Lake, R. K.; Balandin, A. A. Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 2018, 10, 37555–37565.

    Article  CAS  Google Scholar 

  38. Li, T.; Song, J. W.; Zhao, X. P.; Yang, Z.; Pastel, G.; Xu, S. M.; Jia, C.; Dai, J. Q.; Chen, C. J.; Gong, A. et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 2018, 4, eaar3724.

    Article  CAS  Google Scholar 

  39. Carson, J. K.; Lovatt, S. J.; Tanner, D. J.; Cleland, A. C. Thermal conductivity bounds for isotropic, porous materials. Int. J. Heat Mass Transf. 2005, 48, 2150–2158.

    Article  Google Scholar 

  40. Tang, Y. F.; Zheng, Q. F.; Chen, B.; Ma, Z. Q.; Gong, S. Q. A new class of flexible nanogenerators consisting of porous aerogel films driven by mechanoradicals. Nano Energy 2017, 38, 401–411.

    Article  CAS  Google Scholar 

  41. Zheng, Q. F.; Xie, R. S.; Fang, L. M.; Cai, Z. Y.; Ma, Z. Q.; Gong, S. Q. Oxygen-deficient and nitrogen-doped MnO2 nanowire-reduced graphene oxide-cellulose nanofibril aerogel electrodes for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 24407–24417.

    Article  CAS  Google Scholar 

  42. Smith, D. S.; Alzina, A.; Bourret, J.; Nait-Ali, B.; Pennec, F.; Tessier-Doyen, N.; Otsu, K.; Matsubara, H.; Elser, P.; Gonzenbach, U. T. Thermal conductivity of porous materials. J. Mater. Res. 2013, 28, 2260–2272.

    Article  CAS  Google Scholar 

  43. Qiu, L.; Zou, H. Y.; Tang, D. W.; Wen, D. S.; Feng, Y. H.; Zhang, X. X. Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. Appl. Therm. Eng. 2018, 130, 1004–1011.

    Article  Google Scholar 

  44. Chen, G. G.; Chen, C. J.; Pei, Y.; He, S. M.; Liu, Y.; Jiang, B.; Jiao, M. L.; Gan, W. T.; Liu, D. P.; Yang, B. et al. A strong, flame-retardant, and thermally insulating wood laminate. Chem. Eng. J. 2020, 383, 123109.

    Article  CAS  Google Scholar 

  45. Chen, C. J.; Hu, L. B. Super elastic and thermally insulating carbon aerogel: Go tubular like polar bear hair. Matter 2019, 1, 36–38.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean government (MSIT) (NRF-2020M3H4A1A02084898 and NRF-2019M3C7A1032076) and the Technology Innovation Program (20013794, Center for Composite Materials and Concurrent Design) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-il Kim.

Electronic Supplementary Material

12274_2021_3400_MOESM1_ESM.pdf

Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S.J., Hong, H., Jeong, C. et al. Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano Res. 14, 3253–3259 (2021). https://doi.org/10.1007/s12274-021-3400-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3400-5

Keywords

Navigation