Skip to main content
Log in

Shallowing interfacial carrier trap in transition metal dichalcogenide heterostructures with interlayer hybridization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the unique properties, layered transition metal dichalcogenide (TMD) and its heterostructures exhibit great potential for applications in electronics. The electrical performance, e.g., contact barrier and resistance to electrodes, of TMD heterostructure devices can be significantly tailored by employing the functional layers, called interlayer engineering. At the interface between different TMD layers, the dangling-bond states normally exist and act as traps against charge carrier flow. In this study, we propose a technique to suppress such carrier trap that uses enhanced interlayer hybridization to saturate dangling-bond states, as demonstrated in a strongly interlayer-coupled monolayer-bilayer PtSe2 heterostructure. The hybridization between the unsaturated states and the interlayer electronic states of PtSe2 significantly reduces the depth of carrier traps at the interface, as corroborated by our scanning tunnelling spectroscopic measurements and density functional theory calculations. The suppressed interfacial trap demonstrates that interlayer saturation may offer an efficient way to relay the charge flow at the interface of TMD heterostructures. Thus, this technique provides an effective way for optimizing the interface contact, the crucial issue exists in two-dimensional electronic community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    CAS  Google Scholar 

  2. Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

    CAS  Google Scholar 

  3. Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

    CAS  Google Scholar 

  4. Ugeda, M. M.; Bradley, A. J.; Zhang, Y.; Onishi, S.; Chen, Y.; Ruan, W.; Ojeda-Aristizabal, C.; Ryu, H.; Edmonds, M. T.; Tsai, H. Z. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 2015, 12, 92–97.

    Google Scholar 

  5. Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H. Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

    CAS  Google Scholar 

  6. Li, G.; Zhang, Y. Y.; Guo, H.; Huang, L.; Lu, H. L.; Lin, X.; Wang, Y. L.; Du, S. X.; Gao, H. J. Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds. Chem. Soc. Rev. 2018, 47, 6073–6100.

    CAS  Google Scholar 

  7. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

    CAS  Google Scholar 

  8. Yang, G. H.; Shao, Y.; Niu, J. B.; Ma, X. L.; Lu, C. Y.; Wei, W.; Chuai, X. C.; Wang, J. W.; Cao, J. C.; Huang, H. et al. Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals. Nat. Commun. 2020, 11, 659.

    Google Scholar 

  9. Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096–1101.

    CAS  Google Scholar 

  10. Zhang, C. D.; Li, M. Y.; Tersoff, J.; Han, Y. M.; Su, Y. S.; Li, L. J.; Muller, D. A.; Shih, C. K. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152–158.

    CAS  Google Scholar 

  11. Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524–528.

    CAS  Google Scholar 

  12. Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

    CAS  Google Scholar 

  13. Chu, Z. D.; Han, A. L.; Lei, C.; Lopatin, S.; Li, P.; Wannlund, D.; Wu, D.; Herrera, K.; Zhang, X. X.; MacDonald, A. H. et al. Energy-resolved photoconductivity mapping in a monolayer-bilayer WSe2 lateral heterostructure. Nano Lett. 2018, 18, 7200–7206.

    CAS  Google Scholar 

  14. Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1906.

    Google Scholar 

  15. Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70–74.

    CAS  Google Scholar 

  16. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    CAS  Google Scholar 

  17. Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

    CAS  Google Scholar 

  18. Cao, Y.; Mishchenko, A.; Yu, G. L.; Khestanova, E.; Rooney, A. P.; Prestat, E.; Kretinin, A. V.; Blake, P.; Shalom, M. B.; Woods, C. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 2015, 15, 4914–4921.

    CAS  Google Scholar 

  19. Bradley, A. J.; Ugeda, M. M.; da Jornada, F. H.; Qiu, D. Y.; Ruan, W.; Zhang, Y.; Wickenburg, S.; Riss, A.; Lu, J.; Mo, S. K. et al. Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe2 nanostructures. Nano Lett. 2015, 15, 2594–2599.

    CAS  Google Scholar 

  20. Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

    CAS  Google Scholar 

  21. Zhang, C. D.; Chen, Y. X.; Huang, J. K.; Wu, X. X.; Li, L. J.; Yao, W.; Tersoff, J. Shih, C. K. Visualizing band offsets and edge states in bilayer-monolayer transition metal dichalcogenides lateral heterojunction. Nat. Commun. 2016, 7, 10349.

    Google Scholar 

  22. Zhao, Y. D.; Qiao, J. S.; Yu, Z. H.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X. R.; Ji, W. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.

    Google Scholar 

  23. Li, X. X.; Fan, Z. Q.; Liu, P. Z.; Chen, M. L.; Liu, X.; Jia, C. K.; Sun, D. M.; Jiang, X. W.; Han, Z.; Bouchiat, V. et al. Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2 transistor. Nat. Commun. 2017, 8, 970.

    Google Scholar 

  24. Nagler, P.; Ballottin, M. V.; Mitioglu, A. A.; Mooshammer, F.; Paradiso, N.; Strunk, C.; Huber, R.; Chernikov, A.; Christianen, P. C. M.; Schüller, C. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 2017, 8, 1551.

    Google Scholar 

  25. Li, L. H.; Tian, T.; Cai, Q.; Shih, C. J.; Santos, E. J. G. Asymmetric electric field screening in van der Waals heterostructures. Nat. Commun. 2018, 9, 1271.

    Google Scholar 

  26. Qiu, X. H.; Ji, W. Illuminating interlayer interactions. Nat. Mater. 2018, 17, 211–213.

    CAS  Google Scholar 

  27. Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540.

    CAS  Google Scholar 

  28. Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2016, 2, e1600069.

    Google Scholar 

  29. LaGasse, S. W.; Dhakras, P.; Watanabe, K.; Taniguchi, T.; Lee, J. U. Gate-tunable graphene-WSe2 heterojunctions at the schottky-mott limit. Adv. Mater. 2019, 31, 1901392.

    Google Scholar 

  30. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    CAS  Google Scholar 

  31. Qiao, J. S.; Pan, Y. H.; Yang, F.; Wang, C.; Chai, Y.; Ji, W. Few-layer Tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull. 2018, 63, 159–168.

    CAS  Google Scholar 

  32. Ciarrocchi, A.; Avsar, A.; Ovchinnikov, D.; Kis, A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 2018, 9, 919.

    Google Scholar 

  33. Li, Z.; Zhuang, J. C.; Wang, L.; Feng, H. F.; Gao, Q.; Xu, X.; Hao, W. C.; Wang, X. L.; Zhang, C.; Wu, K. H. et al. Realization of flat band with possible nontrivial topology in electronic Kagome lattice. Sci. Adv. 2018, 4, eaau4511.

    CAS  Google Scholar 

  34. Feng, H. F.; Liu, C.; Zhou, S.; Gao, N.; Gao, Q.; Zhuang, J. C.; Xu, X.; Hu, Z. P.; Wang, J. O.; Chen, L. et al. Experimental realization of two-dimensional buckled lieb lattice. Nano Lett. 2020, 20, 2537–2543.

    CAS  Google Scholar 

  35. Shao, Y.; Song, S. R.; Wu, X.; Qi, J.; Lu, H. L.; Liu, C.; Zhu, S. Y.; Liu, Z. L.; Wang, J. O.; Shi, D. X. et al. Epitaxial fabrication of two-dimensional NiSe2 on Ni(111) substrate. Appl. Phys. Lett. 2017, 111, 113107.

    Google Scholar 

  36. Feng, H. F.; Xu, Z. F.; Zhuang, J. C.; Wang, L.; Liu, Y. L.; Xu, X.; Song, L.; Hao, W. C.; Du, Y. Role of charge density wave in monatomic assembly in transition metal dichalcogenides. Adv. Funct. Mater. 2019, 29, 1900367.

    Google Scholar 

  37. Wang, Y. L.; Li, L. F.; Yao, W.; Song, S. R.; Sun, J. T.; Pan, J. B.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y. Q. et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013–4018.

    CAS  Google Scholar 

  38. Lin, X.; Lu, J. C.; Shao, Y.; Zhang, Y. Y.; Wu, X.; Pan, J. B.; Gao, L.; Zhu, S. Y.; Qian, K.; Zhang, Y. F. et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater. 2017, 16, 717–721.

    CAS  Google Scholar 

  39. Yao, W.; Wang, E. Y.; Huang, H. Q.; Deng, K.; Yan, M. Z.; Zhang, K. N.; Miyamoto, K.; Okuda, T.; Li, L. F.; Wang, Y. L. et al. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun. 2017, 8, 14216.

    CAS  Google Scholar 

  40. Zhuang, H. L.; Hennig, R. G. Computational search for single-layer transition-metal dichalcogenide photocatalysts. J. Phys. Chem. C 2013, 117, 20440–20445.

    CAS  Google Scholar 

  41. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density Functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

    CAS  Google Scholar 

  42. Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

    Google Scholar 

  43. Heyd, J.; Scuseria, G. E.; Ernzerhof, M.; Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledged the financial support from the Beijing Natural Science Foundation (Nos. Z190006 and 4192054), the National Natural Science Foundation of China (Nos. 61725107, 11622437, 61674171, 11974422, 61761166009, and 61888102), the National Key Research & Development Projects of China (Nos. 2016YFA0202301, 2019YFA0308000, and 2018YFE0202700), the Fundamental Research Funds for the Central Universities, China and the Research Funds of Renmin University of China (Nos. 16XNLQ01 and 19XNQ025), and the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB30000000 and XDB28000000). Calculations were performed at the Physics Lab of High-Performance Computing of Renmin University of China and Shanghai Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Ji or Yeliang Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Qiao, J., Liu, L. et al. Shallowing interfacial carrier trap in transition metal dichalcogenide heterostructures with interlayer hybridization. Nano Res. 14, 1390–1396 (2021). https://doi.org/10.1007/s12274-020-3188-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3188-8

Keywords

Navigation