Skip to main content
Log in

Multivalent Sn species synergistically favours the CO2-into-HCOOH conversion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although Sn-based catalysts have recently achieved considerable improvement in selective electro-catalyzing CO2 into HCOOH, the role of various valence Sn species is not fully understood due to the complexity and uncertainty of their evolution during the reaction process. Here, inspired by the theoretical simulations that the concomitant multivalent Sn (Sn0, Sn11 and SnIV) can significantly motivate the intrinsic activity of Sn-based catalyst, the Sn/SnO/SnO2 nanosheets were proposed to experimentally verify the synergistic effect of multivalent Sn species on the CO2-into-HCOOH conversion. During CO2 reduction reaction, the Sn/SnO/SnO2 nanosheets, which are prepared by the sequential hydrothermal reaction, calcined crystallization and low-temperature H2 treatment, exhibit a high FEHCOOH of 89.6% at −0.9 VRHE as well as a large cathodic current density. Systematic experimental and theoretical results corroborate that multivalent Sn species synergistically energize the CO2 activation, the HCOO* adsorption, and the electron transfer, which make Sn/SnO/SnO2 favour the conversion from CO2 into HCOOH in both thermodynamics and kinetics. This proof-of-concept study establishes a relationship between the enhanced performance and the multivalent Sn species, and also provides a practicable and scalable avenue for rational engineering high-powered electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, Y.; Yang, S. Z.; Jiang, S. P.; Wang, S. Y. Supported single atoms as new class of catalysts for electrochemical reduction of carbon dioxide. Small Meth. 2019, 3, 1800440.

    Article  CAS  Google Scholar 

  2. Chen, Y. Q.; Yao, Y. J.; Xia, Y. J.; Mao, K.; Tang, G. G.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Sun, X. H.; Hu, Z. Advanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Res. 2020, 13, 2777–2783.

    Article  CAS  Google Scholar 

  3. Chen, C.; Zhu, X. R.; Wen, X. J.; Zhou, Y. Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q. L.; Du, S. Q.; Liu, T. T. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717–724.

    Article  CAS  Google Scholar 

  4. Tan, D. X.; Cui, C. N.; Shi, J. B.; Luo, Z. X.; Zhang, B. X.; Tan, X. N.; Han, B. X.; Zheng, L. R.; Zhang, J.; Zhang, J. L. Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Res. 2019, 12, 1167–1172.

    Article  CAS  Google Scholar 

  5. Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

    Article  CAS  Google Scholar 

  6. Vasileff, A.; Zhi, X.; Xu, C. C.; Ge, L.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys. ACS Catal. 2019, 9, 9411–9417.

    Article  CAS  Google Scholar 

  7. Liu, S. B.; Lu, X. F.; Xiao, J.; Wang, X.; Lou, X. W. Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem., Int. Ed. 2019, 58, 13828–13833.

    Article  CAS  Google Scholar 

  8. Wu, J.; Xie, Y.; Du, S. C.; Ren, Z. Y.; Yu, P.; Wang, X. W.; Wang, G. L.; Fu, H. G. Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. Sci. China Mater., in press. DOI: https://doi.org/10.1007/s40843-020-1361-3.

  9. Gong, Q. F.; Ding, P.; Xu, M. Q.; Zhu, X. R.; Wang, M. Y.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.

    Article  CAS  Google Scholar 

  10. Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.

    Article  CAS  Google Scholar 

  11. Liu, S. B.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. Efficient electrochemical reduction of CO2 to HCOOH over Sub-2 nm SnO2 quantum wires with exposed grain Boundaries. Angew. Chem., Int. Ed. 2019, 58, 8499–8503.

    Article  CAS  Google Scholar 

  12. Yuan, T. B.; Hu, Z.; Zhao, Y. X.; Fang, J. J.; Lv, J.; Zhang, Q. H.; Zhuang, Z. B.; Gu, L.; Hu, S. Two-dimensional amorphous SnOx from liquid metal: Mass production, phase transfer, and electrocatalytic CO2 reduction toward formic acid. Nano Lett. 2020, 20, 2916–2922.

    Article  CAS  Google Scholar 

  13. Li, J. C.; Kuang, Y.; Meng, Y. T.; Tian, X.; Hung, W. H.; Zhang, X.; Li, A. W.; Xu, M. Q.; Zhou, W.; Ku, C. S. et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency. J. Am. Chem. Soc. 2020, 142, 7276–7282.

    Article  CAS  Google Scholar 

  14. Wei, F. C.; Wang, T. T.; Jiang, X. L.; Ai, Y.; Cui, A. Y.; Cui, J.; Fu, J. W.; Cheng, J. G.; Lei, L. C.; Hou, Y. et al. H. Controllably engineering mesoporous surface and dimensionality of SnO2 toward high-performance CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 2002092.

    Article  CAS  Google Scholar 

  15. Ye, K.; Zhou, Z. W.; Shao, J. Q.; Lin, L.; Gao, D. F.; Ta, N.; Si, R.; Wang, G. X.; Bao, X. H. In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 4814–4821.

    Article  CAS  Google Scholar 

  16. Wang, K.; Liu, D. Y.; Deng, P. L.; Liu, L. M.; Lu, S. Y.; Sun, Z. J.; Ma, Y. M.; Wang, Y. K.; Li, M. T.; Xia, B. Yu. et al. Band alignment in Zn2SnO4/SnO2 heterostructure enabling efficient CO2 electrochemical reduction. Nano Energy 2019, 64, 103954.

    Article  CAS  Google Scholar 

  17. Wei, F. C.; Wang, T. T.; Jiang, X. L.; Ai, Y.; Cui, A. Y.; Cui, J.; Fu, J. W.; Cheng, J. G.; Lei, L. C.; Hou, Y. et al. Controllably engineering mesoporous surface and dimensionality of SnO2 toward hig-performance CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 2002092.

    Article  CAS  Google Scholar 

  18. Zhang, Y.; Ji, L.; Qiu, W. B.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Iodide-derived nanostructured silver promotes selective and efficient carbon dioxide conversion into carbon monoxide. Chem. Commun. 2018, 54, 2666–2669.

    Article  CAS  Google Scholar 

  19. Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123.

    Article  CAS  Google Scholar 

  20. Fan, L.; Xia, Z.; Xu, M. J.; Lu, Y. Y.; Li, Z. J. 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products. Adv. Funct. Mater. 2018, 28, 1706289.

    Article  CAS  Google Scholar 

  21. Lv, K. L.; Fan, Y. C.; Zhu, Y.; Yuan, Y.; Wang, J. R.; Zhu, Y.; Zhang, Q. F. Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol. J. Mater. Chem. A 2018, 6, 5025–5031.

    Article  CAS  Google Scholar 

  22. Jiao, Y.; Zheng, Y.; Chen, P.; Jaroniec, M.; Qiao, S. Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 2017, 139, 18093–18100.

    Article  CAS  Google Scholar 

  23. Coskun, H.; Aljabour, A.; De Luna, P.; Farka, D.; Greunz, T.; Stifter, D.; Kus, M.; Zheng, X. L.; Liu, M.; Hassel, A. W. et al. Biofunctionalized conductive polymers enable efficient CO2 electroreduction. Sci. Adv. 2017, 3, e1700686.

    Article  CAS  Google Scholar 

  24. Li, F. W.; Zhao, S. F.; Chen, L.; Khan, A.; MacFarlane, D. R.; Zhang, J. Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide. Energy Environ. Sci. 2016, 9, 216–223.

    Article  CAS  Google Scholar 

  25. Trindell, J. A.; Clausmeyer, J.; Crooks, R. M. Size stability and H2/CO selectivity for Au nanoparticles during electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 16161–16167.

    Article  CAS  Google Scholar 

  26. Sun, K.; Cheng, T.; Wu, L. N.; Hu, Y. F.; Zhou, J. G.; Maclennan, A.; Jiang, Z. H.; Gao, Y. Z.; Goddard III, W. A.; Wang, Z, J. Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles. J. Am. Chem. Soc. 2017, 139, 15608–15611.

    Article  CAS  Google Scholar 

  27. Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833–1839.

    Article  CAS  Google Scholar 

  28. Hori, Y. Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry. Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds.; Springer: New York, 2008; pp 89–189.

    Chapter  Google Scholar 

  29. Zhang, Z. R.; Ahmad, F.; Zhao, W. H.; Yan, W. H.; Zhang, W. H.; Huang, H. W.; Ma, C.; Zeng, J. Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide. Nano Lett. 2019, 19, 4029–4034.

    Article  CAS  Google Scholar 

  30. Zhang, X. X.; Chen, Z. P.; Mou, K. W.; Jiao, M. Y.; Zhang, X. P.; Liu, L. C. Intentional construction of high-performance SnO2 catalysts with a 3D porous structure for electrochemical reduction of CO2. Nanoscale, 2019, 11, 18715–18722.

    Article  CAS  Google Scholar 

  31. Wen, G. B.; Lee, D. U.; Ren, B. H.; Hassan, F. M.; Jiang, G. P.; Cano, Z. P.; Gostick, J.; Croiset, E.; Bai, Z. Y.; Yang, L. et al. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 2018, 8, 1802427.

    Article  CAS  Google Scholar 

  32. Li, T. F.; Yang, C.; Luo, J. L.; Zheng, G. F. Electrolyte driven highly selective CO2 electroreduction at low overpotentials. ACS Catal. 2019, 9, 10440–10447.

    Article  CAS  Google Scholar 

  33. Dutta, A.; Kuzume, A.; Kaliginedi, V.; Rahaman, M.; Sinev, I.; Ahmadi, M.; Cuenya, B. R.; Vesztergom, S.; Broekmann, P. Probing the chemical state of tin oxide NP catalysts during CO2 electroreduction: A complementary operando approach. Nano Energy 2018, 53, 828–840.

    Article  CAS  Google Scholar 

  34. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    Article  CAS  Google Scholar 

  35. Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen. W. X. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999.

    Article  CAS  Google Scholar 

  36. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 Single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  Google Scholar 

  37. Baruch, M. F.; Pander, J. E.; White III, J. L.; Bocarsly, A. B. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 2015, 5, 3148–3156.

    Article  CAS  Google Scholar 

  38. Dutta, A.; Kuzume, A.; Rahaman, M.; Vesztergom, S.; Broekmann, P. Monitoring the chemical state of catalysts for CO2 electroreduction: An in operando study. ACS Catal. 2015, 5, 7498–7502.

    Article  CAS  Google Scholar 

  39. Zhao, C. C.; Wang, J. L.; Goodenough, J. B. Comparison of electrocatalytic reduction of CO2 to HCOOH with different tin oxides on carbon nanotubes. Electrochem. Commun. 2016, 65, 9–13.

    Article  CAS  Google Scholar 

  40. Fang, M. L.; Zheng, Z. P.; Chen, J. Y.; Chen, Q.; Liu, D. Y.; Xu, B. B.; Wu, J. Y.; Kuang, Q.; Xie, Z. X. Surface structure-dependent electrocatalytic reduction of CO2 to C1 products on SnO2 catalysts. Sustain. Energy Fuels 2020, 4, 600–606.

    Article  CAS  Google Scholar 

  41. An, X. W.; Li, S. S.; Yoshida, A.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Electrodeposition of tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH. ACS Sustainable Chem. Eng. 2019, 7, 9360–9368.

    Article  CAS  Google Scholar 

  42. Su, X. S.; Sun, Y. M.; Jin, L.; Zhang, L.; Yang, Y.; Kerns, P.; Liu, B.; Li, S. Z.; He, J. Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Appl. Catal. B: Environ. 2020, 269, 118800.

    Article  CAS  Google Scholar 

  43. Li, J.; Jiao, J. Q.; Zhang, H. C.; Zhu, P.; Ma, H. F.; Chen, C.; Xiao, H.; Lu, Q. Two-dimensional SnO2 nanosheets for efficient carbon dioxide electroreduction to formate. ACS Sustain. Chem. Eng. 2020, 8, 4975–4982.

    Article  CAS  Google Scholar 

  44. Hammer, B.; Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.

    Article  CAS  Google Scholar 

  45. Chen, Z. P.; Zhang, X. X.; Jiao, M. Y.; Mou, K. W.; Zhang, X. P.; Liu, L. C. Engineering electronic structure of stannous sulfide by amino-functionalized carbon: Toward efficient electrocatalytic reduction of CO2 to formate. Adv. Energy Mater. 2020, 10, 1903664.

    Article  CAS  Google Scholar 

  46. Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao. F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.

    Article  CAS  Google Scholar 

  47. Gao, S.; Jiao, X. C.; Sun, Z. T.; Zhang, W. H.; Sun, Y. F.; Wang, C. M.; Hu, Q. T.; Zu, X. L.; Yang, F.; Yang, S. Y. et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2016, 55, 698–702.

    Article  CAS  Google Scholar 

  48. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang. P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

    Article  CAS  Google Scholar 

  49. Chen, Z.; Fan, T. T.; Zhang, Y, Q.; Xiao, J.; Gao, M. R.; Duan, N. Q.; Zhang, J. W.; Li, J. H.; Liu, Q. X.; Yi, X. D. et al. Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH. Appl. Catal. B: Environ. 2020, 261, 118243.

    Article  CAS  Google Scholar 

  50. Zhang, W. Y.; Qin, Q.; Dai, L.; Qin, R. X.; Zhao, X. J.; Chen, X. M.; Ou, D. H.; Chen, J.; Chuong, T. T.; Wu, B. H. et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew. Chem., Int. Ed. 2018, 57, 9475–9479.

    Article  CAS  Google Scholar 

  51. Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 2014, 136, 1734–1737.

    Article  CAS  Google Scholar 

  52. Lei, F. C.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Liu, K. T.; Liang, L.; Yao, T.; Pan, B. C.; Wei, S. Q.; Xie. Y. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.

    Article  CAS  Google Scholar 

  53. Won, D. H.; Choi, C. H.; Chung, J.; Chung, M. W.; Kim, E. H.; Woo, S. I. Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. ChemSusChem 2015, 8, 3092–3098.

    Article  CAS  Google Scholar 

  54. Salehi-Khojin, A.; Jhong, H. R. M.; Rosen, B. A.; Zhu, W.; Ma, S. C.; Kenis, P. J. A.; Masel, R. I. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 2013, 117, 1627–1632.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support by the National Natural Science Foundation of China (Nos. 21631004 and 21901065), the Natural Science Foundation of Heilongjiang Province of China (No. LH2020B019), the Youth Science and Technology Innovation Team Project of Heilongjiang Province (No. RCYJTD201803), and the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT-2018009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyu Ren, Guiling Wang or Honggang Fu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Bai, X., Ren, Z. et al. Multivalent Sn species synergistically favours the CO2-into-HCOOH conversion. Nano Res. 14, 1053–1060 (2021). https://doi.org/10.1007/s12274-020-3149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3149-2

Keywords

Navigation