Skip to main content
Log in

Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As an excellent optical device, photodetectors have many important applications, such as communication technology, display technology, scientific measurement, fire monitoring, aerospace and biomedical research, and it’s of great significance in the research of nanotechnology and optoelectronics. Graphene, as the first two-dimensional (2D) single-element nanomaterial, has the advantages of high carrier mobility, high strength, high light transmittance and excellent thermal conductivity, and it’s widely used in various nano-optical devices. The great success of graphene has led scientists to extensive research on other 2D single-element nanomaterials. Recently, a group of novel 2D single-element nanomaterials have attracted a lot of attention from scientists because of its excellent physical, chemical, electronic, mechanical and optical properties. Furthermore, it has opened a new door for the realization of new and efficient photodetectors. The group of 2D single-element nanomaterials are called 2D-Xenes and used to make high-performance photodetectors. Currently, there are few studies on photodetectors based on 2D-Xenes, but some 2D-Xenes have been applied to photodetectors and reported. Some of these have excellent photodetection performance, such as high photoresponsivity (R), broad spectral response range, fast photoresponse speed and high specific detectivity (D*). Based on the novel 2D-Xenes, this review explores the types and preparation methods of 2D-Xenes, and the working mechanisms of 2D-Xenes photodetectors. Finally, the challenges and development trends of 2D-Xenes in the future are discussed. The research of 2D-Xenes is of great significance for the development of high-performance photodetectors in the future, and is expected to be widely used in other nanoelectronics and optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev.2015, 44, 3691–3718.

    CAS  Google Scholar 

  2. Ankah, G. N.; Büchele, P.; Poulsen, K.; Rauch, T.; Tedde, S. F.; Gimmler, C.; Schmidt, O.; Kraus, T. PbS quantum dot based hybrid-organic photodetectors for X-ray sensing. Org. Electron.2016, 33, 201–206.

    CAS  Google Scholar 

  3. Teng, F.; Hu, K.; Ouyang, W. X.; Fang, X. S. Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater.2018, 30, 1706262.

    Google Scholar 

  4. Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater.2019, 29, 1803807.

    Google Scholar 

  5. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol.2014, 9, 780–793.

    CAS  Google Scholar 

  6. Xie, C.; Yan, F. Flexible photodetectors based on novel functional materials. Small2017, 13, 1701822.

    Google Scholar 

  7. Wang, B.; Zhong, S. P.; Zhang, Z. B.; Zheng, Z. Q.; Zhang, Y. P.; Zhang, H. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors. Appl. Mater. Today2019, 15, 115–138.

    Google Scholar 

  8. Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater.2016, 28, 403–433.

    CAS  Google Scholar 

  9. Zhuge, F. W.; Zheng, Z.; Luo, P.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Nanostructured materials and architectures for advanced infrared photodetection. Adv. Mater. Technol.2017, 2, 1700005.

    Google Scholar 

  10. Su, L. X.; Yang, W.; Cai, J.; Chen, H. Y.; Fang, X. S. Self-powered ultraviolet photodetectors driven by built-in electric field. Small2017, 13, 1701687.

    Google Scholar 

  11. Wang, G. Y.; Zhang, Y. Z.; You, C. Y.; Liu, B. Y.; Yang, Y. H.; Li, H. J. W.; Cui, A. J.; Liu, D. M.; Yan, H. Two dimensional materials based photodetectors. Infrared Phys. Technol.2018, 88, 149–173.

    CAS  Google Scholar 

  12. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA2005, 102, 10451–10453.

    CAS  Google Scholar 

  13. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.2012, 7, 699–712.

    CAS  Google Scholar 

  14. Zhou, Y. H.; An, H. N.; Gao, C.; Zheng, Z. Q.; Wang, B. UV–Vis–NIR photodetector based on monolayer MoS2. Mater. Lett.2019, 237, 298–302.

    CAS  Google Scholar 

  15. Zhou, Y. H.; Zhang, Z. B.; Xu, P.; Zhang, H.; Wang, B. UV–Visible photodetector based on i-type heterostructure of ZnO-QDs/monolayer MoS2. Nanoscale Res. Lett.2019, 14, 364.

    Google Scholar 

  16. Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W. A flexible, transparent and high-performance gas sensor based on layer-materials for wearable technology. Nanotechnology2017, 28, 415501.

    Google Scholar 

  17. Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, Y. B.; Yang, G. W.; Li, J. B. Self-assembly high-performance UV–Vis–NIR broadband β-In2Se3/si photodetector array for weak signal detection. ACS Appl. Mater. Interfaces2017, 9, 43830–43837.

    CAS  Google Scholar 

  18. Wang, B.; Jin, H. T.; Zheng, Z. Q.; Zhou, Y. H.; Gao, C. Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures. Sens. Actuators B Chem.2017, 244, 344–356.

    CAS  Google Scholar 

  19. Zheng, Z. Q.; Jin, H. T.; Ouyang, G.; Wang, B. Field emission and growth mechanism of ZnO microrods array with nanospikes fabricated by thermal evaporation. Mater. Lett.2016, 170, 210–212.

    CAS  Google Scholar 

  20. Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci. Rep.2015, 5, 11070.

    CAS  Google Scholar 

  21. Zheng, Z. Q.; Wang, B.; Yao, J. D.; Yang, G. W. Light-controlled C2H2 gas sensing based on Au–ZnO nanowires with plasmon-enhanced sensitivity at room temperature. J. Mater. Chem. C2015, 3, 7067–7074.

    CAS  Google Scholar 

  22. Zheng, Z. Q.; Zhu, L. F.; Wang, B. In2O3 nanotower hydrogen gas sensors based on both schottky junction and thermoelectronic emission. Nanoscale Res. Lett.2015, 10, 293.

    Google Scholar 

  23. Wang, B.; Jin, X.; Wu, H. Y.; Zheng, Z. Q.; Ouyang, Z. B. 3D resonator based on luminescence enhanced by both polarized, size-dependent whispering gallery modes and Fabry–Pérot waveguide modes in individual ZnO micro-and nanonails. Nanoscale2014, 6, 5338–5342.

    CAS  Google Scholar 

  24. Wang, B.; Zheng, Z. Q.; Zhu, L. F.; Yang, Y. H.; Wu, H. Y. Selfassembled and Pd decorated Zn2SnO4/ZnO wire-sheet shape nano-heterostructures networks hydrogen gas sensors. Sens. Actuators B Chem.2014, 195, 549–561.

    CAS  Google Scholar 

  25. Wang, B.; Zheng, Z. Q.; Wu, H. Y.; Zhu, L. F. Field emission properties and growth mechanism of In2O3 nanostructures. Nanoscale Res. Lett.2014, 9, 111.

    Google Scholar 

  26. Wang, B.; Jin, X.; Ouyang, Z. B.; Xu, P. Field emission properties originated from 2D electronics gas successively tunneling for 1D heterostructures of ZnO nanobelts decorated with In2O3 nanoteeth. J. Nanopart. Res.2012, 14, 1008.

    Google Scholar 

  27. Wang, B.; Jin, X.; Ouyang, Z. B. Synthesis, characterization and cathodoluminescence of self-assembled 1D ZnO/In2O3 nano-heterostructures. Crystengcomm2012, 14, 6888–6903.

    CAS  Google Scholar 

  28. Wang, B.; Jin, X.; Wu, H. Y.; Zheng, Z. Q. Whispering gallery and Fabry–Pérot modes enhanced luminescence from individual ZnO micro mushroom. J. Appl. Phys.2013, 113, 034313.

    Google Scholar 

  29. Wang, B.; Wu, H. Y.; Zheng, Z. Q.; Yang, Y. H. Field emission and photoluminescence of ZnO nanocombs. Appl. Phys. A2013, 113, 549–556.

    CAS  Google Scholar 

  30. Wang, B.; Jin, X.; Ouyang, Z. B.; Xu, P. Photoluminescence and field emission of 1D ZnO nanorods fabricated by thermal evaporation. Appl. Phys. A2012, 108, 195–200.

    CAS  Google Scholar 

  31. Wang, B.; Li, I. L.; Xu, P.; Xing, L. W. Fabrication and photoluminescence of the SnO2 plate-shape nanostructures and chrysanthemum-shape nanostructures. Rev. Adv. Mater. Sci.2013, 33, 164–170.

    CAS  Google Scholar 

  32. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev.2013, 113, 3766–3798.

    CAS  Google Scholar 

  33. Chimene, D.; Alge, D. L.; Gaharwar, A. K. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater.2015, 27, 7261–7284.

    CAS  Google Scholar 

  34. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano2015, 9, 9451–9469.

    CAS  Google Scholar 

  35. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.

    CAS  Google Scholar 

  36. Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater.2009, 19, 3077–3083.

    CAS  Google Scholar 

  37. Bao, Q. L.; Zhang, H.; Wang, B.; Ni, Z. H.; Lim, C. H. Y. X.; Wang, Y.; Tang, D. Y.; Loh, K. P. Broadband graphene polarizer. Nat. Photonics2011, 5, 411–415.

    CAS  Google Scholar 

  38. Zhang, H.; Bao, Q. L.; Tang, D. Y.; Zhao, L. M.; Loh, K. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett.2009, 95, 141103.

    Google Scholar 

  39. Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express2009, 17, 17630–17635.

    CAS  Google Scholar 

  40. Zhang, H.; Tang, D. Y.; Knize, R. J.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl. Phys. Lett.2010, 96, 111112.

    Google Scholar 

  41. Zhang, H.; Virally, S.; Bao, Q. L.; Ping, L. K.; Massar, S.; Godbout, N.; Kockaert, P. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett.2012, 37, 1856–1858.

    CAS  Google Scholar 

  42. Bao, Q. L.; Zhang, H.; Yang, J. X.; Wang, S.; Tang, D. Y.; Jose, R.; Ramakrishna, S.; Lim, C. T.; Loh, K. P. Graphene-polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater.2010, 20, 782–791.

    CAS  Google Scholar 

  43. Bao, Q. L.; Zhang, H.; Ni, Z. H.; Wang, Y.; Polavarapu, L.; Shen, Z. X.; Xu, Q. H.; Tang, D. Y.; Loh, K. P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res.2011, 4, 297–307.

    CAS  Google Scholar 

  44. Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P.; Lin, B.; Tjin, S. C. Compact graphene mode-locked wavelength-tunable erbiumdoped fiber lasers: From all anomalous dispersion to all normal dispersion. Laser Phys. Lett.2010, 7, 591–596.

    CAS  Google Scholar 

  45. Zheng, Z. W.; Zhao, C. J.; Lu, S. B.; Chen, Y.; Li, Y.; Zhang, H.; Wen, S. C. Microwave and optical saturable absorption in graphene. Opt. Express2012, 20, 23201–23214.

    CAS  Google Scholar 

  46. Zhao, L. M.; Tang, D. Y.; Zhang, H.; Wu, X.; Bao, Q. L.; Loh, K. P. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Opt. Lett.2010, 35, 3622–3624.

    CAS  Google Scholar 

  47. Ponraj, J. S.; Xu, Z. Q.; Dhanabalan, S. C.; Mu, H. R.; Wang, Y. S.; Yuan, J.; Li, P. F.; Thakur, S.; Ashrafi, M.; Mccoubrey, K. et al. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology2016, 27, 462001.

    Google Scholar 

  48. Wang, Z. T.; Chen, Y.; Zhao, C. J.; Zhang, H.; Wen, S. C. Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber. IEEE Photonics J.2012, 4, 869–876.

    CAS  Google Scholar 

  49. Song, Y. F.; Li, L.; Zhang, H.; Shen, D. Y.; Tang, D. Y.; Loh, K. P. Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. Opt. Express2013, 21, 10010–10018.

    CAS  Google Scholar 

  50. Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. Vector dissipative solitons in graphene mode locked fiber lasers. Opt. Commun.2010, 283, 3334–3338.

    CAS  Google Scholar 

  51. Li, H. J.; Wang, L. L.; Zhang, H.; Huang, Z. R.; Sun, B.; Zhai, X.; Wen, S. C. Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter. Appl. Phys. Express2014, 7, 024301.

    Google Scholar 

  52. Song, Y. F.; Zhang, H.; Tang, D. Y.; Shen, D. Y. Polarization rotation vector solitons in a graphene mode-locked fiber laser. Opt. Express2012, 20, 27283–27289.

    CAS  Google Scholar 

  53. Miao, L. L.; Jiang, Y. Q.; Lu, S. B.; Shi, B. X.; Zhao, C. J.; Zhang, H.; Wen, S. C. Broadband ultrafast nonlinear optical response of few-layers graphene: Toward the mid-infrared regime. Photonics Res.2015, 3, 214–219.

    CAS  Google Scholar 

  54. Zheng, G. P.; Chen, Y.; Huang, H. H.; Zhao, C. J.; Lu, S. B.; Chen, S. Q.; Zhang, H.; Wen, S. C. Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: Applications for ultra-fast laser photonics. ACS Appl. Mater. Interfaces2013, 5, 10288–10293.

    CAS  Google Scholar 

  55. Wang, Z. T.; Zou, Y. H.; Chen, Y.; Wu, M.; Zhao, C. J.; Zhang, H.; Wen, S. C. Graphene sheet stacks for Q-switching operation of an erbium-doped fiber laser. Laser Phys. Lett.2013, 10, 075102.

    Google Scholar 

  56. Chen, X.; Wang, Y.; Xiang, Y. J.; Jiang, G. B.; Wang, L. L.; Bao, Q. L.; Zhang, H.; Liu, Y.; Wen, S. C.; Fan, D. Y. A broadband optical modulator based on a graphene hybrid plasmonic waveguide. J. Lightw. Technol.2016, 34, 4948–4953.

    CAS  Google Scholar 

  57. Shivananju, B. N.; Bao, X. Z.; Yu, W. Z.; Yuan, J.; Mu, H. R.; Sun, T.; Xue, T. Y.; Zhang, Y. P.; Liang, Z. Z.; Kan, R. F. et al. Graphene heterostructure integrated optical fiber Bragg grating for light motion tracking and ultrabroadband photodetection from 400 nm to 10.768 μm. Adv. Funct. Mater.2019, 29, 1807274.

    Google Scholar 

  58. Mu, H. R.; Wang, Z. T.; Yuan, J.; Xiao, S.; Chen, C. Y.; Chen, Y.; Chen, Y.; Song, J. C.; Wang, Y. S.; Xue, Y. Z. et al. Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photonics2015, 2, 832–841.

    CAS  Google Scholar 

  59. Han, M. M.; Zhang, S. M.; Li, X. L.; Zhang, H. X.; Yang, H.; Yuan, T. Polarization dynamic patterns of vector solitons in a graphene mode-locked fiber laser. Opt. Express2015, 23, 2424–2435.

    CAS  Google Scholar 

  60. Song, Y. F.; Liang, Z. M.; Zhang, H.; Zhang, Q.; Zhao, L. M.; Shen, D. Y.; Tang, D. Y. Period-doubling and quadrupling bifurcation of vector soliton bunches in a graphene mode locked fiber laser. IEEE Photonics J.2017, 9, 4502308.

    Google Scholar 

  61. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys.2009, 81, 109–162.

    CAS  Google Scholar 

  62. Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature2011, 479, 338–344.

    CAS  Google Scholar 

  63. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun.2008, 146, 351–355.

    CAS  Google Scholar 

  64. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature2012, 490, 192–200.

    CAS  Google Scholar 

  65. Zhang, Y. P.; Wu, Z. X.; Cao, Y. Y.; Zhang, H. Y. Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal. Opt. Commun.2015, 338, 168–173.

    CAS  Google Scholar 

  66. Du, X.; Skachko, I.; Duerr, F.; Luican, A.; Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature2009, 462, 192–195.

    CAS  Google Scholar 

  67. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science2008, 320, 1308.

    CAS  Google Scholar 

  68. Mueller, T.; Xia, F. N.; Freitag, M.; Tsang, J.; Avouris, P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys. Rev. B2009, 79, 245430.

    Google Scholar 

  69. Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics2010, 4, 297–301.

    CAS  Google Scholar 

  70. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics2016, 10, 216–226.

    CAS  Google Scholar 

  71. Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B2011, 83, 245213.

    Google Scholar 

  72. Jiang, S. L.; Xie, C. Y.; Gu, Y.; Zhang, Q. H.; Wu, X. X.; Sun, Y. L.; Li, W.; Shi, Y. P.; Zhao, L. Y.; Pan, S. Y. et al. Anisotropic growth and scanning tunneling microscopy identification of ultrathin even-layered PdSe2 ribbons. Small2019, 15, 1902789.

    CAS  Google Scholar 

  73. Kim, S.; Maassen, J.; Lee, J.; Kim, S. M.; Han, G.; Kwon, J.; Hong, S.; Park, J.; Liu, N.; Park, Y. C. et al. Interstitial Mo-assisted photovoltaic effect in multilayer MoSe2phototransistors. Adv. Mater.2018, 30, 1705542.

    Google Scholar 

  74. Cao, G. Y.; Shang, A. X.; Zhang, C.; Gong, Y. P.; Li, S. J.; Bao, Q. L.; Li, X. F. Optoelectronic investigation of monolayer MoS2/WSe2 vertical heterojunction photoconversion devices. Nano Energy2016, 30, 260–266.

    CAS  Google Scholar 

  75. Zheng, W. H.; Jiang, Y.; Hu, X. L.; Li, H. L.; Zeng, Z. X. S.; Wang, X.; Pan, A. L. Light emission properties of 2D transition metal dichalcogenides: Fundamentals and applications. Adv. Opt. Mater.2018, 6, 1800420.

    Google Scholar 

  76. Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res.2016, 9, 1543–1560.

    CAS  Google Scholar 

  77. Cao, G. Y.; An, Y. D.; Bao, Q. L.; Li, X. F. Physics and optoelectronic simulation of photodetectors based on 2D materials. Adv. Opt. Mater.2019, 7, 1900410.

    Google Scholar 

  78. Jiang, S. L.; Zhang, Z. P.; Zhang, N.; Huan, Y. H.; Gong, Y.; Sun, M. X.; Shi, J. P.; Xie, C. Y.; Yang, P. F.; Fang, Q. Y. et al. Application of chemical vapor-deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Res.2018, 11, 1787–1797.

    CAS  Google Scholar 

  79. Jiang, S. L.; Hong, M.; Wei, W.; Zhao, L. Y.; Zhang, N.; Zhang, Z. P.; Yang, P. F.; Gao, N.; Zhou, X. B.; Xie, C.Y. et al. Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem.2018, 1, 17.

    Google Scholar 

  80. Xie, Y.; Zhang, B.; Wang, S. X.; Wang, D.; Wang, A. Z.; Wang, Z. Y.; Yu, H. H.; Zhang, H. J.; Chen, Y. X.; Zhao, M. W. et al. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2,717 nm. Adv. Mater.2017, 29, 1605972.

    Google Scholar 

  81. Zhou, M.; Chen, X. B.; Li, M. L.; Du, A. J. Widely tunable and anisotropic charge carrier mobility in monolayer tin(II) selenide using biaxial strain: A first-principles study. J. Mater. Chem. C2017, 5, 1247–1254.

    CAS  Google Scholar 

  82. Takeda, K.; Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B1994, 50, 14916–14922.

    CAS  Google Scholar 

  83. Ji, X. Y.; Kong, N.; Wang, J. Q.; Li, W. L.; Xiao, Y. L.; Gan, S. T.; Zhang, Y.; Li, Y. J.; Song, X. R.; Xiong, Q. Q. et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater.2018, 30, 1803031.

    Google Scholar 

  84. Guzmán-Verri, G. G.; Voon, L. C. L. Y. Electronic structure of silicon-based nanostructures. Phys. Rev. B2007, 76, 075131.

    Google Scholar 

  85. Ni, Z. Y.; Liu, Q. H.; Tang, K. C.; Zheng, J. X.; Zhou, J.; Qin, R.; Gao, Z. X.; Yu, D. P.; Lu, J. Tunable bandgap in silicene and germanene. Nano Lett.2012, 12, 113–118.

    CAS  Google Scholar 

  86. Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano2013, 7, 4414–4421.

    CAS  Google Scholar 

  87. Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater.2015, 14, 1020–1025.

    CAS  Google Scholar 

  88. Chen, Y.; Jiang, G. B.; Chen, S. Q.; Guo, Z. N.; Yu, X. F.; Zhao, C. J.; Zhang, H.; Bao, Q. L.; Wen, S. C.; Tang, D. Y. et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express2015, 23, 12823–12833.

    CAS  Google Scholar 

  89. Sun, Z. B.; Xie, H. H.; Tang, S. Y.; Yu, X. F.; Guo, Z. N.; Shao, J. D.; Zhang, H.; Huang, H.; Wang, H. Y.; Chu, P. K. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angew. Chem., Int. Ed.2015, 54, 11526–11530.

    CAS  Google Scholar 

  90. Lu, S. B.; Miao, L. L.; Guo, Z. N.; Qi, X.; Zhao, C. J.; Zhang, H.; Wen, S. C.; Tang, D. Y.; Fan, D. Y. Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material. Opt. Express2015, 23, 11183–11194.

    CAS  Google Scholar 

  91. Tao, W.; Zhu, X. B.; Yu, X. H.; Zeng, X. W.; Xiao, Q. L.; Zhang, X. D.; Ji, X. Y.; Wang, X. S.; Shi, J. J.; Zhang, H. et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater.2017, 29, 1603276.

    Google Scholar 

  92. Luo, Z. C.; Liu, M.; Guo, Z. N.; Jiang, X. F.; Luo, A. P.; Zhao, C. J.; Yu, X. F.; Xu, W. C.; Zhang, H. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express2015, 23, 20030–20039.

    CAS  Google Scholar 

  93. Qin, Z. P.; Xie, G. Q.; Zhang, H.; Zhao, C. J.; Yuan, P.; Wen, S. C.; Qian, L. J. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 μm. Opt. Express2015, 23, 24713–24718.

    CAS  Google Scholar 

  94. Mu, H. R.; Lin, S. H.; Wang, Z. C.; Xiao, S.; Li, P. F.; Chen, Y.; Zhang, H.; Bao, H. F.; Lau, S. P.; Pan, C. X. et al. Black phosphoruspolymer composites for pulsed lasers. Adv. Opt. Mater.2015, 3, 1447–1453.

    CAS  Google Scholar 

  95. Ma, J.; Lu, S. B.; Guo, Z. N.; Xu, X. D.; Zhang, H.; Tang, D. Y.; Fan, D. Y. Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers. Opt. Express2015, 23, 22643–22648.

    Google Scholar 

  96. Qiu, M.; Wang, D.; Liang, W. Y.; Liu, L. P.; Zhang, Y.; Chen, X.; Sang, D. K.; Xing, C. Y.; Li, Z. J.; Dong, B. Q. et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. USA2018, 115, 501–506.

    CAS  Google Scholar 

  97. Xu, Y. H.; Wang, Z. T.; Guo, Z. N.; Huang, H.; Xiao, Q. L.; Zhang, H.; Yu, X. F. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv. Opt. Mater.2016, 4, 1223–1229.

    CAS  Google Scholar 

  98. Jiang, Q. Q.; Xu, L.; Chen, N.; Zhang, H.; Dai, L. M.; Wang, S. Y. Facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem., Int. Ed.2016, 55, 13849–13853.

    CAS  Google Scholar 

  99. Dhanabalan, S. C.; Ponraj, J. S.; Guo, Z. N.; Li, S. J.; Bao, Q. L.; Zhang, H. Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci.2017, 4, 1600305.

    Google Scholar 

  100. Ren, X. H.; Zhou, J.; Qi, X.; Liu, Y. D.; Huang, Z. Y.; Li, Z. J.; Ge, Y. Q.; Dhanabalan, S. C.; Ponraj, J. S.; Wang, S. Y. et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater.2017, 7, 1700396.

    Google Scholar 

  101. Xing, C. Y.; Jing, G. H.; Liang, X.; Qiu, M.; Li, Z. J.; Cao, R.; Li, X. J.; Fan, D. Y.; Zhang, H. Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale2017, 9, 8096–8101.

    CAS  Google Scholar 

  102. Zhou, Y.; Zhang, M. X.; Guo, Z. N.; Miao, L. L.; Han, S. T.; Wang, Z. Y.; Zhang, X. W.; Zhang, H.; Peng, Z. C. Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horiz.2017, 4, 997–1019.

    CAS  Google Scholar 

  103. Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep.2017, 7, 42357.

    CAS  Google Scholar 

  104. Qiu, M.; Ren, W. X.; Jeong, T.; Won, M.; Park, G. Y.; Sang, D. K.; Liu, L. P.; Zhang, H.; Kim, J. S. Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev.2018, 47, 5588–5601.

    CAS  Google Scholar 

  105. Zheng, J. L.; Yang, Z. H.; Si, C.; Liang, Z. M.; Chen, X.; Cao, R.; Guo, Z. N.; Wang, K.; Zhang, Y.; Ji, J. H. et al. Black phosphorus based all-optical-signal-processing: Toward high performances and enhanced stability. ACS Photonics2017, 4, 1466–1476.

    CAS  Google Scholar 

  106. Song, Y. F.; Chen, S.; Zhang, Q.; Li, L.; Zhao, L. M.; Zhang, H.; Tang, D. Y. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt. Express2016, 24, 25933–25942.

    CAS  Google Scholar 

  107. Tang, X.; Liang, W. Y.; Zhao, J. L.; Li, Z. J.; Qiu, M.; Fan, T. J.; Luo, C. S.; Zhou, Y.; Li, Y.; Guo, Z. N. et al. Fluorinated phosphorene: Electrochemical synthesis, atomistic fluorination, and enhanced stability. Small2017, 13, 1702739.

    Google Scholar 

  108. Chen, X. H.; Xu, G. H.; Ren, X. H.; Li, Z. J.; Qi, X.; Huang, K.; Zhang, H.; Huang, Z. Y.; Zhong, J. X. A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. J. Mater. Chem. A2017, 5, 6581–6588.

    CAS  Google Scholar 

  109. Pan, Y. Y.; Dan, Y.; Wang, Y. Y.; Ye, M.; Zhang, H.; Quhe, R. G.; Zhang, X. Y.; Li, J. Z.; Guo, W. L.; Yang, L. et al. Schottky barriers in bilayer phosphorene transistors. ACS Appl. Mater. Interfaces2017, 9, 12694–12705.

    CAS  Google Scholar 

  110. Qiu, M.; Sun, Z. T.; Sang, D. K.; Han, X. G.; Zhang, H.; Niu, C. M. Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale2017, 9, 13384–13403.

    CAS  Google Scholar 

  111. Zheng, J. L.; Tang, X.; Yang, Z. H.; Liang, Z. M.; Chen, Y. X.; Wang, K.; Song, Y. F.; Zhang, Y.; Ji, J. H.; Liu, Y. et al. Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater.2017, 5, 1700026.

    Google Scholar 

  112. Liu, Y.; Shivananju, B. N.; Wang, Y. S.; Zhang, Y. P.; Yu, W. Z.; Xiao, S.; Sun, T.; Ma, W. L.; Mu, H. R.; Lin, S. H. et al. Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl. Mater. Interfaces2017, 9, 36137–36145.

    CAS  Google Scholar 

  113. Wang, Z. T.; Xu, Y. H.; Dhanabalan, S. C.; Sophia, J.; Zhao, C. J.; Xu, C. W.; Xiang, Y. J.; Li, J. Q.; Zhang, H. Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser. IEEE Photonics J.2016, 8, 1503310.

    Google Scholar 

  114. Pawliszewska, M.; Ge, Y. Q.; Li, Z. J.; Zhang, H.; Sotor, J. Fundamental and harmonic mode-locking at 2.1 μm with black phosphorus saturable absorber. Opt. Express2017, 25, 16916–16921.

    CAS  Google Scholar 

  115. Xu, Y. H.; Jiang, X. F.; Ge, Y. Q.; Guo, Z. N.; Zeng, Z. K.; Xu, Q. H.; Zhang, H.; Yu, X. F.; Fan, D. Y. Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. J. Mater. Chem. C2017, 5, 3007–3013.

    CAS  Google Scholar 

  116. Liu, J. J.; Liu, J.; Guo, Z. N.; Zhang, H.; Ma, W. W.; Wang, J. Y.; Su, L. B. Dual-wavelength Q-switched Er: SrF2 laser with a black phosphorus absorber in the mid-infrared region. Opt. Express2016, 24, 30289–30295.

    CAS  Google Scholar 

  117. Yin, F.; Hu, K.; Chen, S.; Wang, D. Y.; Zhang, J. N.; Xie, M. S.; Yang, D.; Qiu, M.; Zhang, H.; Li, Z. G. Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B2017, 5, 5433–5440.

    CAS  Google Scholar 

  118. Xu, Y. H.; Wang, W. X.; Ge, Y. Q.; Guo, H. Y.; Zhang, X. J.; Chen, S.; Deng, Y. H.; Lu, Z. G.; Zhang, H. Stabilization of black phosphorous quantum dots in PMMA nanofiber film and broadband nonlinear optics and ultrafast photonics application. Adv. Funct. Mater.2017, 27, 1702437.

    Google Scholar 

  119. Luo, S. J.; Zhao, J. L.; Zou, J. F.; He, Z. L.; Xu, C. W.; Liu, F. W.; Huang, Y.; Dong, L.; Wang, L.; Zhang, H. Self-standing polypyrrole/black phosphorus laminated film: Promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS Appl. Mater. Interfaces2018, 10, 3538–3548.

    CAS  Google Scholar 

  120. Ge, Y. Q.; Chen, S.; Xu, Y. J.; He, Z. L.; Liang, Z. M.; Chen, Y. X.; Song, Y. F.; Fan, D. Y.; Zhang, K.; Zhang, H. Few-layer seleniumdoped black phosphorus: Synthesis, nonlinear optical properties and ultrafast photonics applications. J. Mater. Chem. C2017, 5, 6129–6135.

    CAS  Google Scholar 

  121. Tan, Y.; Guo, Z. N.; Ma, L. A.; Zhang, H.; Akhmadaliev, S.; Zhou, S. Q.; Chen, F. Q-switched waveguide laser based on two-dimensional semiconducting materials: Tungsten disulfide and black phosphorous. Opt. Express2016, 24, 2858–2866.

    CAS  Google Scholar 

  122. Xu, Y. J.; Yuan, J.; Zhang, K.; Hou, Y.; Sun, Q.; Yao, Y. M.; Li, S. J.; Bao, Q. L.; Zhang, H.; Zhang, Y. G. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater.2017, 27, 1702211.

    Google Scholar 

  123. Wang, Y. Z.; Zhang, F.; Tang, X.; Chen, X.; Chen, Y. X.; Huang, W. C.; Liang, Z. M.; Wu, L. M.; Ge, Y. Q.; Song, Y. F. et al. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev.2018, 12, 1800016.

    Google Scholar 

  124. Liu, S. X.; Li, Z. J.; Ge, Y. Q.; Wang, H. D.; Yue, R.; Jiang, X. T.; Li, J. Q.; Wen, Q.; Zhang, H. Graphene/phosphorene nanoheterojunction: Facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance. Photonics Res.2017, 5, 662–668.

    CAS  Google Scholar 

  125. Liu, J. M.; Chen, Y.; Li, Y.; Zhang, H.; Zheng, S. Q.; Xu, S. X. Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber. Photonics Res.2018, 6, 198–203.

    CAS  Google Scholar 

  126. Zhou, J.; Li, Z. J.; Ying, M.; Liu, M. X.; Wang, X. M.; Wang, X. Y.; Cao, L. W.; Zhang, H.; Xu, G. X. Black phosphorus nanosheets for rapid microRNA detection. Nanoscale2018, 10, 5060–5064.

    CAS  Google Scholar 

  127. Jiang, X. F.; Zeng, Z. K.; Li, S.; Guo, Z. N.; Zhang, H.; Huang, F.; Xu, Q. H. Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses. Materials2017, 10, 210.

    Google Scholar 

  128. Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Funct. Mater.2019, 29, 1808306.

    Google Scholar 

  129. Zhang, M.; Wu, Q.; Zhang, F.; Chen, L. L.; Jin, X. X.; Hu, Y. W.; Zheng, Z.; Zhang, H. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater.2019, 7, 1800224.

    Google Scholar 

  130. Liang, X.; Ye, X. Y.; Wang, C.; Xing, C. Y.; Miao, Q. W.; Xie, Z. J.; Chen, X. L.; Zhang, X. D.; Zhang, H.; Mei, L. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release2019, 296, 150–161.

    CAS  Google Scholar 

  131. Fan, T. J.; Zhou, Y. S.; Qiu, M.; Zhang, H. Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine. J. Innov. Opt. Health Sci.2018, 11, 1830003.

    CAS  Google Scholar 

  132. Zhang, J. N.; Chen, S.; Ma, Y.; Wang, D. Y.; Zhang, J.; Wang, Y. D.; Li, W. J.; Yu, Z. Q.; Zhang, H.; Yin, F. et al. Organosilicon modification to enhance the stability of black phosphorus nanosheets under ambient conditions. J. Mater. Chem. B2018, 6, 4065–4070.

    CAS  Google Scholar 

  133. Tang, S. N.; He, Z. L.; Liang, G. W.; Chen, S.; Ge, Y. Q.; Sang, D. K.; Lu, J. X.; Lu, S. B.; Wen, Q.; Zhang, H. Pulse duration dependent nonlinear optical response in black phosphorus dispersions. Opt. Commun.2018, 406, 244–248.

    CAS  Google Scholar 

  134. Huang, H.; Xiao, Q. L.; Wang, J. H.; Yu, X. F.; Wang, H. Y.; Zhang, H.; Chu, P. K. Black phosphorus: A two-dimensional reductant for in situ nanofabrication. NPJ 2D Mater. Appl.2017, 1, 20.

    Google Scholar 

  135. Qiu, M.; Singh, A.; Wang, D.; Qu, J. L.; Swihart, M.; Zhang, H.; Prasad, P. N. Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. NanoToday2019, 25, 135–155.

    CAS  Google Scholar 

  136. Li, C.; Liu, J.; Guo, Z. N.; Zhang, H.; Ma, W. W.; Wang, J. Y.; Xu, X. D.; Su, L. B. Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er: CaF2 mid-infrared laser. Opt. Commun.2018, 406, 158–162.

    CAS  Google Scholar 

  137. Sharma, A.; Wen, B.; Liu, B. Q.; Myint, Y. W.; Zhang, H.; Lu, Y. R. Defect engineering in few-layer phosphorene. Small2018, 14, 1704556.

    Google Scholar 

  138. Li, Z. J.; Xu, H.; Shao, J. D.; Jiang, C.; Zhang, F.; Lin, J.; Zhang, H.; Li, J. Q.; Huang, P. Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Appl. Mater. Today2019, 15, 297–304.

    Google Scholar 

  139. Tang, X.; Chen, H.; Ponraj, J. S.; Dhanabalan, S. C.; Xiao, Q. L.; Fan, D. Y.; Zhang, H. Fluorination-enhanced ambient stability and electronic tolerance of black phosphorus quantum dots. Adv. Sci.2018, 5, 1800420.

    Google Scholar 

  140. Sang, D. K.; Wang, H. D.; Guo, Z. N.; Xie, N.; Zhang, H. Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications. Adv. Funct. Mater.2019, 29, 1903419.

    CAS  Google Scholar 

  141. Wang, Y. Y.; Huang, P.; Ye, M.; Quhe, R. G.; Pan, Y. Y.; Zhang, H.; Zhong, H. X.; Shi, J. J.; Lu, J. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem. Mater.2017, 29, 2191–2201.

    CAS  Google Scholar 

  142. Wang, Y. Y.; Ye, M.; Weng, M. Y.; Li, J. Z.; Zhang, X. Y.; Zhang, H.; Guo, Y.; Pan, Y. Y.; Xiao, L.; Liu, J. K. et al. Electrical contacts in monolayer arsenene devices. ACS Appl. Mater. Interfaces2017, 9, 29273–29284.

    CAS  Google Scholar 

  143. Tao, W.; Ji, X. Y.; Xu, X. D.; Islam, M. A.; Li, Z. J.; Chen, S.; Saw, P. E.; Zhang, H.; Bharwani, Z.; Guo, Z. L. et al. Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem., Int. Ed.2017, 56, 11896–11900.

    CAS  Google Scholar 

  144. Lu, L.; Tang, X.; Cao, R.; Wu, L. M.; Li, Z. J.; Jing, G. H.; Dong, B. Q.; Lu, S. B.; Li, Y.; Xiang, Y. J. et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: A promising optical Kerr media with enhanced stability. Adv. Opt. Mater.2017, 5, 1700301.

    Google Scholar 

  145. Song, Y. F.; Liang, Z. M.; Jiang, X. T.; Chen, Y. X.; Li, Z. J.; Lu, L.; Ge, Y. Q.; Wang, K.; Zheng, J. L.; Lu, S. B. et al. Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater.2017, 4, 045010.

    Google Scholar 

  146. Tao, W.; Ji, X. Y.; Zhu, X. B.; Li, L.; Wang, J. Q.; Zhang, Y.; Saw, P. E.; Li, W. L.; Kong, N.; Islam, M. A. et al. Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater.2018, 30, 1802061.

    Google Scholar 

  147. Xue, T. Y.; Liang, W. Y.; Li, Y. W.; Sun, Y. H.; Xiang, Y. J.; Zhang, Y. P.; Dai, Z. G.; Duo, Y. H.; Wu, L. M.; Qi, K. et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun.2019, 10, 28.

    CAS  Google Scholar 

  148. Song, Y. F.; Chen, Y. X.; Jiang, X. T.; Liang, W. Y.; Wang, K.; Liang, Z. M.; Ge, Y. Q.; Zhang, F.; Wu, L. M.; Zheng, J. L. et al. Nonlinear few-layer antimonene-based all-optical signal processing: Ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater.2018, 6, 1701287.

    Google Scholar 

  149. Wang, Y. Z.; Huang, W. C.; Wang, C.; Guo, J.; Zhang, F.; Song, Y. F.; Ge, Y. Q.; Wu, L. M.; Liu, J.; Li, J. Q. et al. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev.2019, 13, 1800313.

    Google Scholar 

  150. Zhang, G. J.; Tang, X.; Fu, X.; Chen, W. C.; Shabbir, B.; Zhang, H.; Liu, Q.; Gong, M. L. 2D group-VA fluorinated antimonene: Synthesis and saturable absorption. Nanoscale2019, 11, 1762–1769.

    CAS  Google Scholar 

  151. Tang, X.; Hu, L.; Fan, T. W.; Zhang, L.; Zhu, L. P.; Li, H.; Liu, H. L.; Liang, J. Y.; Wang, K. D.; Li, Z. J. et al. Robust above-roomtemperature ferromagnetism in few-layer antimonene triggered by nonmagnetic adatoms. Adv. Funct. Mater.2019, 29, 1808746.

    Google Scholar 

  152. Song, Y. F.; Chen, Y. X.; Jiang, X. T.; Liang, Z. M.; Liang, W. Y.; Ge, Y. Q.; Zhang, H. Few-layer antimonene decorated microfiber as an all optical thresholder and wavelength converter for optical signal processing. In Proceedings of Asia Communications and Photonics Conference 2017. Guangzhou, China, 2017.

    Google Scholar 

  153. Zhang, F.; Jiang, X. T.; He, Z. L.; Liang, W. Y.; Xu, S. X.; Zhang, H. Third-order nonlinear optical responses and carrier dynamics in antimonene. Opt. Mater.2019, 95, 109209.

    CAS  Google Scholar 

  154. Lu, L.; Wang, W. H.; Wu, L. M.; Jiang, X. T.; Xiang, Y. J.; Li, J. Q.; Fan, D. Y.; Zhang, H. All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation. ACS Photonics2017, 4, 2852–2861.

    CAS  Google Scholar 

  155. Guo, B.; Wang, S. H.; Wu, Z. X.; Wang, Z. X.; Wang, D. H.; Huang, H.; Zhang, F.; Ge, Y. Q.; Zhang, H. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express2018, 26, 22750–22760.

    CAS  Google Scholar 

  156. Chai, T.; Li, X. H.; Feng, T. C.; Guo, P. L.; Song, Y. F.; Chen, Y. X.; Zhang, H. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale2018, 10, 17617–17622.

    CAS  Google Scholar 

  157. Huang, H.; Ren, X. H.; Li, Z. J.; Wang, H. D.; Huang, Z. Y.; Qiao, H.; Tang, P. H.; Zhao, J. L.; Liang, W. Y.; Ge, Y. Q. et al. Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance. Nanotechnology2018, 29, 235201.

    Google Scholar 

  158. Su, X. C.; Wang, Y. R.; Zhang, B. T.; Zhang, H.; Yang, K. J.; Wang, R. H.; He, J. L. Bismuth quantum dots as an optical saturable absorber for a 1.3 μm Q-switched solid-state laser. Appl. Opt.2019, 58, 1621–1625.

    CAS  Google Scholar 

  159. Xing, C. Y.; Huang, W. C.; Xie, Z. J.; Zhao, J. L.; Ma, D. T.; Fan, T. J.; Liang, W. Y.; Ge, Y. Q.; Dong, B. Q.; Li, J. Q. et al. Ultrasmall bismuth quantum dots: Facile liquid-phase exfoliation, characterization, and application in high-performance UV−Vis photodetector. ACS Photonics2018, 5, 621–629.

    CAS  Google Scholar 

  160. Lu, L.; Liang, Z. M.; Wu, L. M.; Chen, Y. X.; Song, Y. F.; Dhanabalan, S. C.; Ponraj, J. S.; Dong, B. Q.; Xiang, Y. J.; Xing, F. et al. Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev.2018, 12, 1870012.

    Google Scholar 

  161. Wang, Y. Z.; Huang, W. C.; Zhao, J. L.; Huang, H.; Wang, C.; Zhang, F.; Liu, J.; Li, J. Q.; Zhang, M.; Zhang, H. A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. J. Mater. Chem. C2019, 7, 871–878.

    CAS  Google Scholar 

  162. Xing, C. Y.; Xie, Z. J.; Liang, Z. M.; Liang, W. Y.; Fan, T. J.; Ponraj, J. S.; Dhanabalan, S. C.; Fan, D. Y.; Zhang, H. 2D nonlayered selenium nanosheets: Facile synthesis, photoluminescence, and ultrafast photonics. Adv. Opt. Mater.2017, 5, 1700884.

    Google Scholar 

  163. Fan, T. J.; Xie, Z. J.; Huang, W. C.; Li, Z. J.; Zhang, H. Twodimensional non-layered selenium nanoflakes: Facile fabrications and applications for self-powered photo-detector. Nanotechnology2019, 30, 114002.

    CAS  Google Scholar 

  164. Wu, L. M.; Huang, W. C.; Wang, Y. Z.; Zhao, J. L.; Ma, D. T.; Xiang, Y. J.; Li, J. Q.; Ponraj, J. S.; Dhanabalan, S. C.; Zhang, H. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater.2019, 29, 1806346.

    Google Scholar 

  165. Xie, Z. J.; Xing, C. Y.; Huang, W. C.; Fan, T. J.; Li, Z. J.; Zhao, J. L.; Xiang, Y. J.; Guo, Z. N.; Li, J. Q.; Yang, Z. G. et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater.2018, 28, 1705833.

    Google Scholar 

  166. Huang, W. C.; Zhang, Y.; You, Q.; Huang, P.; Wang, Y. Z.; Huang, Z. N.; Ge, Y. Q.; Wu, L. M.; Dong, Z. J.; Dai, X. Y. et al. Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions. Small2019, 15, 1900902.

    Google Scholar 

  167. Xing, C. Y.; Huang, D. Z.; Chen, S. Y.; Huang, Q. C.; Zhou, C. H.; Peng, Z. C.; Li, J. G.; Zhu, X.; Liu, Y. Z.; Liu, Z. P. et al. Engineering lateral heterojunction of selenium-coated tellurium nanomaterials toward highly efficient solar desalination. Adv. Sci.2019, 6, 1900531.

    CAS  Google Scholar 

  168. Guo, J.; Zhao, J. L.; Huang, D. Z.; Wang, Y. Z.; Zhang, F.; Ge, Y. Q.; Song, Y. F.; Xing, C. Y.; Fan, D. Y.; Zhang, H. Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale2019, 11, 6235–6242.

    CAS  Google Scholar 

  169. Yan, J. H.; Zhang, X. Y.; Pan, Y. Y.; Li, J. Z.; Shi, B. W.; Liu, S. Q.; Yang, J.; Song, Z. G.; Zhang, H.; Ye, M. et al. Monolayer tellurenemetal contacts. J. Mater. Chem. C2018, 6, 6153–6163.

    CAS  Google Scholar 

  170. Molle, A. Xenes: A new emerging two-dimensional materials platform for nanoelectronics. ECS Trans.2016, 75, 163–173.

    CAS  Google Scholar 

  171. Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater.2017, 16, 163–169.

    CAS  Google Scholar 

  172. Zhang, Z. H.; Yang, Y.; Penev, E. S.; Yakobson, B. I. Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater.2017, 27, 1605059.

    Google Scholar 

  173. Bernasconi, M.; Chiarotti, G. L.; Tosatti, E. Ab initio calculations of structural and electronicproperties of gallium solid-state phases. Phys. Rev. B1995, 52, 9988–9998.

    CAS  Google Scholar 

  174. Shao, Z. G.; Ye, X. S.; Yang, L.; Wang, C. L. First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys.2013, 114, 093712.

    Google Scholar 

  175. Liu, N. N.; Bo, G. Y.; Liu, Y. N.; Xu, X.; Du, Y.; Dou, S. X. Recent progress on germanene and functionalized germanene: Preparation, characterizations, applications, and challenges. Small2019, 15, 1805147.

    Google Scholar 

  176. Huang, S. X.; Ling, X. Black phosphorus: Optical characterization, properties and applications. Small2017, 13, 1700823.

    Google Scholar 

  177. Pauling, L.; Simonetta, M. Bond orbitals and bond energy in elementary phosphorus. J. Chem. Phys.1952, 20, 29–34.

    CAS  Google Scholar 

  178. Hart, R. R.; Robin, M. B.; Kuebler, N. A. 3p orbitals, bent bonds, and the electronic spectrum of the P4 molecule. J. Chem. Phys.1965, 42, 3631–3638.

    CAS  Google Scholar 

  179. Pumera, M.; Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater.2017, 29, 1605299.

    Google Scholar 

  180. Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed.2015, 54, 3112–3115.

    CAS  Google Scholar 

  181. Zhang, S. L.; Guo, S. Y.; Chen, Z. F.; Wang, Y. L.; Gao, H. J.; Gómez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. B. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev.2018, 47, 982–1021.

    CAS  Google Scholar 

  182. Lee, J.; Tian, W. C.; Wang, W. L.; Yao, D. X. Two-dimensional pnictogen honeycomb lattice: Structure, on-site spin-orbit coupling and spin polarization. Sci. Rep.2015, 5, 11512.

    Google Scholar 

  183. Kadioglu, Y.; Kilic, S. B.; Demirci, S.; Akturk, O. Ü.; Aktürk, E.; Ciraci, S. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects. Phys. Rev. B2017, 96, 245424.

    Google Scholar 

  184. Wang, D.; Tang, L. M.; Jiang, X. X.; Tan, J. Y.; He, M. D.; Wang, X. J.; Chen, K. Q. High bipolar conductivity and robust in-plane spontaneous electric polarization in selenene. Adv. Electron. Mater.2019, 5, 1800475.

    Google Scholar 

  185. Xian, L. D.; Pérez Paz, A.; Bianco, E.; Ajayan, P. M.; Rubio, A. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater.2017, 4, 041003.

    Google Scholar 

  186. Xiang, Y.; Gao, S. J.; Xu, R. G.; Wu, W. Z.; Leng, Y. S. Phase transition in two-dimensional tellurene under mechanical strain modulation. Nano Energy2019, 58, 202–210.

    CAS  Google Scholar 

  187. Sharma, S.; Singh, N.; Schwingenschlogl, U. Two-dimensional tellurene as excellent thermoelectric material. ACS Appl. Energy Mater.2018, 1, 1950–1954.

    CAS  Google Scholar 

  188. Wu, W. Z.; Qiu, G.; Wang, Y. X.; Wang, R. X.; Ye, P. D. Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev.2018, 47, 7203–7212.

    CAS  Google Scholar 

  189. Cao, R.; Wang, H. D.; Guo, Z. N.; Sang, D. K.; Zhang, L. Y.; Xiao, Q. L.; Zhang, Y. P.; Fan, D. Y.; Li, J. Q.; Zhang, H. Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater.2019, 7, 1900020.

    Google Scholar 

  190. Yin, Y. L.; Cao, R.; Guo, J. S.; Liu, C. Y.; Li, J.; Feng, X. L.; Wang, H. D.; Du, W.; Qadir, A.; Zhang, H. et al. High-speed and highresponsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm. Laser Photonics Rev.2019, 13, 1900032.

    Google Scholar 

  191. Guo, Z. N.; Zhang, H.; Lu, S. B.; Wang, Z. T.; Tang, S. Y.; Shao, J. D.; Sun, Z. B.; Xie, H. H.; Wang, H. Y.; Yu, X. F. et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater.2015, 25, 6996–7002.

    CAS  Google Scholar 

  192. Li, J. F.; Luo, H. Y.; Zhai, B.; Lu, R. G.; Guo, Z. N.; Zhang, H.; Liu, Y. Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep.2016, 6, 30361.

    CAS  Google Scholar 

  193. Kong, L. C.; Qin, Z. P.; Xie, G. Q.; Guo, Z. N.; Zhang, H.; Yuan, P.; Qian, L. J. Black phosphorus as broadband saturable absorber for pulsed lasers from 1 to 2.7 μm wavelength. Laser Phys. Lett.2016, 13, 045801.

    Google Scholar 

  194. Ren, X. H.; Li, Z. J.; Huang, Z. Y.; Sang, D.; Qiao, H.; Qi, X.; Li, J. Q.; Zhong, J. X.; Zhang, H. Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector. Adv. Funct. Mater.2017, 27, 1606834.

    Google Scholar 

  195. Chu, Z. Z.; Liu, J.; Guo, Z. N.; Zhang, H. 2 μm passively Q-switched laser based on black phosphorus. Opt. Mater. Express2016, 6, 2374–2379.

    CAS  Google Scholar 

  196. Wang, H. D.; Sang, D. K.; Guo, Z. N.; Cao, R.; Zhao, J. L.; Shah, M. N. U.; Fan, T. J.; Fan, D. Y.; Zhang, H. Black phosphorus-based field effect transistor devices for Ag ions detection. Chin. Phys. B2018, 27, 087308.

    Google Scholar 

  197. Guo, Z. N.; Chen, S.; Wang, Z. Z.; Yang, Z. Y.; Liu, F.; Xu, Y. H.; Wang, J. H.; Yi, Y.; Zhang, H.; Liao, L. et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater.2017, 29, 1703811.

    Google Scholar 

  198. Rahman, M. Z.; Kwong, C. W.; Davey, K.; Qiao, S. Z. 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications. Energy Environ. Sci.2016, 9, 709–728.

    CAS  Google Scholar 

  199. Sun, Z. B.; Zhao, Y. T.; Li, Z. B.; Cui, H. D.; Zhou, Y. Y.; Li, W. H.; Tao, W.; Zhang, H.; Wang, H. Y.; Chu, P. K. et al. TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small2017, 13, 1602896.

    Google Scholar 

  200. Tao, W.; Kong, N.; Ji, X. Y.; Zhang, Y. P.; Sharma, A.; Ouyang, J.; Qi, B. W.; Wang, J. Q.; Xie, N.; Kang, C. et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev.2019, 48, 2891–2912.

    CAS  Google Scholar 

  201. Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res.2014, 47, 1349–1358.

    CAS  Google Scholar 

  202. Zhai, H. J.; Kiran, B.; Li, J.; Wang, L. S. Hydrocarbon analogues of boron clusters–planarity, aromaticity and antiaromaticity. Nat. Mater.2003, 2, 827–833.

    CAS  Google Scholar 

  203. Zhai, H. J.; Zhao, Y. F.; Li, W. L.; Chen, Q.; Bai, H.; Hu, H. S.; Piazza, Z. A.; Tian, W. J.; Lu, H. G.; Wu, Y. B. et al. Observation of an all-boron fullerene. Nat. Chem.2014, 6, 727–731.

    CAS  Google Scholar 

  204. Liu, H. S.; Gao, J. F.; Zhao, J. J. From boron cluster to two-dimensional boron sheet on Cu(111) surface: Growth mechanism and hole formation. Sci. Rep.2013, 3, 3238.

    Google Scholar 

  205. Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science2015, 350, 1513–1516.

    CAS  Google Scholar 

  206. Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem.2016, 8, 563–568.

    CAS  Google Scholar 

  207. Oganov, A. R.; Chen, J. H.; Gatti, C.; Ma, Y. Z.; Ma, Y. M.; Glass, C. W.; Liu, Z. X.; Yu, T.; Kurakevych, O. O.; Solozhenko, V. L. Ionic high-pressure form of elemental boron. Nature2009, 457, 863–867.

    CAS  Google Scholar 

  208. Ogitsu, T.; Schwegler, E.; Galli, G. β-Rhombohedral boron: At the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev.2013, 113, 3425–3449.

    CAS  Google Scholar 

  209. Peng, B.; Zhang, H.; Shao, H. Z.; Xu, Y. F.; Zhang, R. J.; Zhua, H. Y. The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J. Mater. Chem. C2016, 4, 3592–3598.

    CAS  Google Scholar 

  210. Xu, J. Q.; Chang, Y. Y.; Gan, L.; Ma, Y.; Zhai, T. Y. Ultrathin single-crystalline boron nanosheets for enhanced electro-optical performances. Adv. Sci.2015, 2, 1500023.

    Google Scholar 

  211. Bosio, L. Crystalstructures of Ga(II) and Ga(III). J. Chem. Phys.1978, 68, 1221–1223.

    CAS  Google Scholar 

  212. Kenichi, T.; Kazuaki, K.; Masao, A. High-pressure bct-fcc phase transition in Ga. Phys. Rev. B1998, 58, 2482–2486.

    CAS  Google Scholar 

  213. Schulte, O.; Holzapfel, W. B. Effect of pressure on the atomic volume of Ga and Tl up to 68 GPa. Phys. Rev. B1997, 55, 8122–8128.

    CAS  Google Scholar 

  214. Steenbergen, K. G.; Gaston, N. First-principles melting of gallium clusters down to nine atoms: Structural and electronic contributions to melting. Phys. Chem. Chem. Phys.2013, 15, 15325–15332.

    CAS  Google Scholar 

  215. Kochat, V.; Samanta, A.; Zhang, Y.; Bhowmick, S.; Manimunda, P.; Asif, S. A. S.; Stender, A. S.; Vajtai, R.; Singh, A. K.; Tiwary, C. S. et al. Atomically thin gallium layers from solid-melt exfoliation. Sci. Adv.2018, 4, e1701373.

    Google Scholar 

  216. Krawiec, M. Functionalization of group-14 two-dimensional materials. J. Phys. Condens. Matter2018, 30, 233003.

    Google Scholar 

  217. Pulci, O.; Gori, P.; Marsili, M.; Garbuio, V.; Del Sole, R.; Bechstedt, F. Strong excitons in novel two-dimensional crystals: Silicane and germanane. EPL2012, 98, 37004.

    Google Scholar 

  218. Voon, L. C. L. Y.; Zhu, J. J.; Schwingenschlogl, U. Silicene: Recent theoretical advances. Appl. Phys. Rev.2016, 3, 040802.

    Google Scholar 

  219. Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Twoand one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett.2009, 102, 236804.

    CAS  Google Scholar 

  220. Houssa, M.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. Can silicon behave like graphene? A first-principles study. Appl. Phys. Lett.2010, 97, 112106.

    Google Scholar 

  221. Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R. G.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci.2016, 83, 24–151.

    CAS  Google Scholar 

  222. Drummond, N. D.; Zólyomi, V.; Fal’ko, V. I. Electrically tunable band gap in silicene. Phys. Rev. B2012, 85, 075423.

    Google Scholar 

  223. Cai, Y. M.; Chuu, C. P.; Wei, C. M.; Chou, M. Y. Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys. Rev. B2013, 88, 245408.

    Google Scholar 

  224. Kaloni, T. P.; Schwingenschlögl, U. Stability of germanene under tensile strain. Chem. Phys. Lett.2013, 583, 137–140.

    CAS  Google Scholar 

  225. Xu, Y.; Tang, P. Z.; Zhang, S. C. Large-gap quantum spin Hall states in decorated stanene grown on a substrate. Phys. Rev. B2015, 92, 081112.

    Google Scholar 

  226. Vogg, G.; Brandt, M. S.; Stutzmann, M. Polygermyne—A prototype system for layered germanium polymers. Adv. Mater.2000, 12, 1278–1281.

    CAS  Google Scholar 

  227. Ma, Y. D.; Dai, Y.; Niu, C. W.; Huang, B. B. Halogenated two-dimensional germanium: Candidate materials for being of Quantum Spin Hall state. J. Mater. Chem.2012, 22, 12587–12591.

    CAS  Google Scholar 

  228. Li, Y. F.; Chen, Z. F. Tuning electronic properties of germanane layers by external electric field and biaxial tensile strain: A computational study. J. Phys. Chem. C2014, 118, 1148–1154.

    CAS  Google Scholar 

  229. Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B. L.; Duan, W. H. Functionalized germanene as a prototype of large-gap two-dimensional topological insulators. Phys. Rev. B2014, 89, 115429.

    Google Scholar 

  230. Sahoo, S. K.; Wei, K. H. A perspective on recent advances in 2D stanene nanosheets. Adv. Mater. Interfaces2019, 6, 1900752.

    Google Scholar 

  231. Liu, X. H.; Wang, Y.; Li, F.; Li, Y. F. Two-dimensional stanane: Strain-tunable electronic structure, high carrier mobility, and pronounced light absorption. Phys. Chem. Chem. Phys.2016, 18, 14638–14643.

    CAS  Google Scholar 

  232. Lu, P. F.; Wu, L. Y.; Yang, C. G.; Liang, D.; Quhe, R. G.; Guan, P. F.; Wang, S. M. Quasiparticle and optical properties of strained stanene and stanane. Sci. Rep.2017, 7, 3912.

    Google Scholar 

  233. Yu, X. L.; Huang, L.; Wu, J. S. From a normal insulator to a topological insulator in plumbene. Phys. Rev. B2017, 95, 125113.

    Google Scholar 

  234. Zhao, H.; Zhang, C. W.; Ji, W. X.; Zhang, R. W.; Li, S. S.; Yan, S. S.; Zhang, B. M.; Li, P.; Wang, P. J. Unexpected giant-gap quantum spin hall insulator in chemically decorated plumbene monolayer. Sci. Rep.2016, 6, 20152.

    CAS  Google Scholar 

  235. Zhao, H.; Ji, W. X.; Zhang, C. W.; Li, P.; Li, F.; Wang, P. J.; Zhang, R. W. First-principles prediction of a giant-gap quantum spin Hall insulator in Pb thin film. Phys. Chem. Chem. Phys.2016, 18, 31862–31868.

    CAS  Google Scholar 

  236. Hultgren, R.; Gingrich, N. S.; Warren, B. E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys.1935, 3, 351–355.

    CAS  Google Scholar 

  237. Brown, A.; Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr.1965, 19, 684–685.

    CAS  Google Scholar 

  238. Thurn, H.; Kerbs, H. Crystal structure of violet phosphorus. Angew. Chem., Int. Ed.1966, 5, 1047–1048.

    CAS  Google Scholar 

  239. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun.2014, 5, 4458.

    CAS  Google Scholar 

  240. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol.2014, 9, 372–377.

    CAS  Google Scholar 

  241. Lu, J. P.; Carvalho, A.; Wu, J.; Liu, H. W.; Tok, E. S.; Neto, A. H. C.; Özyilmaz, B.; Sow, C. H. Enhanced photoresponse from phosphorene-phosphorene-suboxide junction fashioned by focused laser micromachining. Adv. Mater.2016, 28, 4090–4096.

    CAS  Google Scholar 

  242. Zhang, C. D.; Lian, J. C.; Yi, W.; Jiang, Y. H.; Liu, L. W.; Hu, H.; Xiao, W. D.; Du, S. X.; Sun, L. L.; Gao, H. J. Surface structures of black phosphorus investigated with scanning tunneling microscopy. J. Phys. Chem. C2009, 113, 18823–18826.

    CAS  Google Scholar 

  243. Takao, Y.; Asahina, H.; Morita, A. Electronicstructure of black phosphorus in tightbinding approach. J. Phys. Soc. Jpn.1981, 50, 3362–3369.

    CAS  Google Scholar 

  244. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano2014, 8, 4033–4041.

    CAS  Google Scholar 

  245. Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B2014, 89, 235319.

    Google Scholar 

  246. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun.2014, 5, 4475.

    CAS  Google Scholar 

  247. Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. H. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun.2016, 7, 13352.

    CAS  Google Scholar 

  248. Akturk, O. Ü.; Özçelik, V. O.; Ciraci, S. Single-layer crystalline phases of antimony: Antimonenes. Phys. Rev. B2015, 91, 235446.

    Google Scholar 

  249. Wang, G. X.; Pandey, R.; Karna, S. P. Atomically thin group V elemental films: Theoretical investigations of antimonene allotropes. ACS Appl. Mater. Interfaces2015, 7, 11490–11496.

    CAS  Google Scholar 

  250. Singh, D.; Gupta, S. K.; Sonvane, Y.; Lukačević, I. Antimonene: A monolayer material for ultraviolet optical nanodevices. J. Mater. Chem. C2016, 4, 6386–6390.

    CAS  Google Scholar 

  251. Cheng, L.; Liu, H. J.; Tan, X. J.; Zhang, J.; Wei, J.; Lv, H. Y.; Shi, J.; Tang, X. F. Thermoelectric properties of a monolayer bismuth. J. Phys. Chem. C2014, 118, 904–910.

    CAS  Google Scholar 

  252. Freitas, R. R. Q.; Rivelino, R.; de Brito Mota, F.; de Castilho, C. M. C.; Kakanakova-Georgieva, A.; Gueorguiev, G. K. Topological insulating phases in two-dimensional bismuth-containing single layers preserved by hydrogenation. J. Phys. Chem. C2015, 119, 23599–23606.

    CAS  Google Scholar 

  253. Xiao, S. H.; Wei, D. H.; Jin, X. F. Bi(111) thin film with insulating interior but metallic surfaces. Phys. Rev. Lett.2012, 109, 166805.

    Google Scholar 

  254. Glass, S.; Reis, F.; Bauernfeind, M.; Aulbach, J.; Scholz, M. R.; Adler, F.; Dudy, L.; Li, G.; Claessen, R.; Schäfer, J. Atomic-scale mapping of layer-by-layer hydrogen etching and passivation of SiC(0001) substrates. J. Phys. Chem. C2016, 120, 10361–10367.

    CAS  Google Scholar 

  255. Zhang, S. L.; Xie, M. Q.; Li, F. Y.; Yan, Z.; Li, Y. F.; Kan, E. J.; Liu, W.; Chen, Z. F.; Zeng, H. B. Semiconducting Group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew. Chem., Int. Ed.2016, 55, 1666–1669.

    CAS  Google Scholar 

  256. Hussain, N.; Liang, T. X.; Zhang, Q. Y.; Anwar, T.; Huang, Y.; Lang, J. L.; Huang, K.; Wu, H. Ultrathin Bi nanosheets with superior photoluminescence. Small2017, 13, 1701349.

    Google Scholar 

  257. Liu, Z.; Liu, C. X.; Wu, Y. S.; Duan, W. H.; Liu, F.; Wu, J. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys. Rev. Lett.2011, 107, 136805.

    Google Scholar 

  258. Kasap, S.; Frey, J. B.; Belev, G.; Tousignant, O.; Mani, H.; Laperriere, L.; Reznik, A.; Rowlands, J. A. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Phys. Status Solidi B2009, 246, 1794–1805.

    CAS  Google Scholar 

  259. Lee, T. I.; Lee, S.; Lee, E.; Sohn, S.; Lee, Y.; Lee, S.; Moon, G.; Kim, D.; Kim, Y. S.; Myoung, J. M. et al. High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv. Mater.2013, 25, 2920–2925.

    CAS  Google Scholar 

  260. Abad, B.; Rull-Bravo, M.; Hodson, S. L.; Xu, X. F.; Martin-Gonzalez, M. Thermoelectric properties of electrodeposited tellurium films and the sodium lignosulfonate effect. Electrochim. Acta2015, 169, 37–45.

    CAS  Google Scholar 

  261. Sridharan, K.; Ollakkan, M. S.; Philip, R.; Park, T. J. Non-hydrothermal synthesis and optical limiting properties of one-dimensional Se/C, Te/C and Se-Te/C core-shell nanostructures. Carbon2013, 63, 263–273.

    CAS  Google Scholar 

  262. Wang, R. P.; Su, X. Q.; Bulla, D.; Wang, T.; Gai, X.; Yang, Z. Y.; Madden, S.; Luther-Davies, B. Identifying the best chalcogenide glass compositions for the application in mid-infrared waveguides. In Proceedings of SPIE9444, International Seminaron Photonics, Optics, and its Applications, Bali, Indonesia, 2015.

    Google Scholar 

  263. Pradhan, A.; Roy, A.; Tripathi, S.; Som, A.; Sarkar, D.; Mishra, J. K.; Roy, K.; Pradeep, T.; Ravishankar, N.; Ghosh, A. Ultra-high sensitivity infra-red detection and temperature effects in a graphene-tellurium nanowire binary hybrid. Nanoscale2017, 9, 9284–9290.

    CAS  Google Scholar 

  264. Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano2018, 12, 7253–7263.

    CAS  Google Scholar 

  265. Zhang, Y.; Zhang, F.; Wu, L. M.; Zhang, Y. P.; Huang, W. C.; Tang, Y. F.; Hu, L. P.; Huang, P.; Zhang, X. W.; Zhang, H. Van der Waals integration of bismuth quantum dots-decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small2019, 15, 1903233.

    CAS  Google Scholar 

  266. Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. X.; Liu, Y. Y.; Du, Y. C.; Goddard III, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron.2018, 1, 228–236.

    Google Scholar 

  267. Zhu, Z. L.; Cai, X. L.; Yi, S.; Chen, J. L.; Dai, Y. W.; Niu, C. Y.; Guo, Z. X.; Xie, M. H.; Liu, F.; Cho, J. H. et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys. Rev. Lett.2017, 119, 106101.

    Google Scholar 

  268. Huang, X. C.; Guan, J. Q.; Lin, Z. J.; Liu, B.; Xing, S. Y.; Wang, W. H.; Guo, J. D. Epitaxial growth and band structure of Te film on graphene. Nano Lett.2017, 17, 4619–4623.

    CAS  Google Scholar 

  269. Du, Y. C.; Qiu, G.; Wang, Y. X.; Si, M. W.; Xu, X. F.; Wu, W. Z.; Ye, P. D. One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett.2017, 17, 3965–3973.

    CAS  Google Scholar 

  270. Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol.2013, 8, 634–638.

    CAS  Google Scholar 

  271. Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol.2013, 8, 100–103.

    CAS  Google Scholar 

  272. Li, Y. L.; Rao, Y.; Mak, K. F.; You, Y. M.; Wang, S. Y.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett.2013, 13, 3329–3333.

    CAS  Google Scholar 

  273. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett.2014, 14, 3347–3352.

    CAS  Google Scholar 

  274. Xu, Y. J.; Yuan, J.; Fei, L. F.; Wang, X. L.; Bao, Q. L.; Wang, Y.; Zhang, K.; Zhang, Y. G. Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small2016, 12, 5000–5007.

    CAS  Google Scholar 

  275. Liu, Y.; Sun, T.; Ma, W. L.; Yu, W. Z.; Nanjunda, S. B.; Li, S. J.; Bao, Q. L. Highly responsive broadband black phosphorus photodetectors. Chin. Opt. Lett.2018, 16, 020002.

    Google Scholar 

  276. Xiong, X.; Li, X. F.; Huang, M. Q.; Li, T. Y.; Gao, T. T.; Wu, Y. Q. High performance black phosphorus electronic and photonic devices with HfLaO dielectric. IEEE Electr. Device Lett.2018, 39, 127–130.

    CAS  Google Scholar 

  277. Yu, X. C.; Zhang, S. L.; Zeng, H. B.; Wang, Q. J. Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy2016, 25, 34–41.

    CAS  Google Scholar 

  278. Chen, X. L.; Lu, X. B.; Deng, B. C.; Sinai, O.; Shao, Y. C.; Li, C.; Yuan, S. F.; Tran, V.; Watanabe, K.; Taniguchi, T. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun.2017, 8, 1672.

    Google Scholar 

  279. Walmsley, T. S.; Chamlagain, B.; Rijal, U.; Wang, T. J.; Zhou, Z. X.; Xu, Y. Q. Gate-tunable photoresponse time in black phosphorus-MoS2 heterojunctions. Adv. Opt. Mater.2019, 7, 1800832.

    Google Scholar 

  280. Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorusmonolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano2014, 8, 8292–8299.

    CAS  Google Scholar 

  281. Viti, L.; Hu, J.; Coquillat, D.; Knap, W.; Tredicucci, A.; Politano, A.; Vitiello, M. S. Black phosphorus terahertz photodetectors. Adv. Mater.2015, 27, 5567–5572.

    CAS  Google Scholar 

  282. Cao, S. W.; Xing, Y. H.; Han, J.; Luo, X.; Lv, W. X.; Lv, W. M.; Zhang, B. S.; Zeng, Z. M. Ultrahigh-photoresponsive UV photodetector based on a BP/ReS2 heterostructure p-n diode. Nanoscale2018, 10, 16805–16811.

    CAS  Google Scholar 

  283. Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics2016, 3, 692–699.

    CAS  Google Scholar 

  284. Ye, L.; Wang, P.; Luo, W. J.; Gong, F.; Liao, L.; Liu, T. D.; Tong, L.; Zang, J. F.; Xu, J. B.; Hu, W. D. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy2017, 37, 53–60.

    CAS  Google Scholar 

  285. Miao, J. S.; Song, B.; Li, Q.; Cai, L.; Zhang, S. M.; Hu, W. D.; Dong, L. X.; Wang, C. Photothermal effect induced negative photoconductivity and high responsivity in flexible black phosphorus transistors. ACS Nano2017, 11, 6048–6056.

    CAS  Google Scholar 

  286. Mayorga-Martinez, C. C.; Gusmao, R.; Sofer, Z.; Pumera, M. Pnictogen-based enzymatic phenol biosensors: Phosphorene, arsenene, antimonene, and bismuthene. Angew. Chem., Int. Ed.2019, 58, 134–138.

    CAS  Google Scholar 

  287. Gusmão, R.; Sofer, Z.; Bouša, D.; Pumera, M. Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew. Chem., Int. Ed.2017, 56, 14417–14422.

    Google Scholar 

  288. Ares, P.; Aguilar-Galindo, F.; Rodriguez-San-Miguel, D.; Aldave, D. A.; Díaz-Tendero, S.; Alcami, M.; Martin, F.; Gómez-Herrero, J.; Zamora, F. Mechanical isolation of highly stable antimonene under ambient conditions. Adv. Mater.2016, 28, 6332–6336.

    CAS  Google Scholar 

  289. Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A. P.; Gudmundsson, J. T. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films2006, 513, 1–24.

    CAS  Google Scholar 

  290. Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater.2012, 24, 2945–2986.

    CAS  Google Scholar 

  291. Zhong, Q.; Kong, L. J.; Gou, J.; Li, W. B.; Sheng, S. X.; Yang, S.; Cheng, P.; Li, H.; Wu, K. H.; Chen, L. Synthesis of borophene nanoribbons on Ag(110) surface. Phys. Rev. Mater.2017, 1, 021001.

    Google Scholar 

  292. Wu, R. T.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol.2019, 14, 44–49.

    CAS  Google Scholar 

  293. Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au(111). ACS Nano2019, 13, 3816–3822.

    CAS  Google Scholar 

  294. Xing, Y.; Zhang, H. M.; Fu, H. L.; Liu, H. W.; Sun, Y.; Peng, J. P.; Wang, F.; Lin, X.; Ma, X. C.; Xue, Q. K. et al. Quantum Griffiths singularity of superconductor-metal transition in Ga thin films. Science2015, 350, 542–545.

    CAS  Google Scholar 

  295. Tao, M. L.; Tu, Y. B.; Sun, K.; Wang, Y. L.; Xie, Z. B.; Liu, L.; Shi, M. X.; Wang, J. Z. Gallenene epitaxially grown on Si(111). 2D Mater.2018, 5, 035009.

    Google Scholar 

  296. Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett.2010, 97, 223109.

    Google Scholar 

  297. Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett.2012, 108, 155501.

    Google Scholar 

  298. Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett.2012, 12, 3507–3511.

    CAS  Google Scholar 

  299. Lin, C. L.; Arafune, R.; Kawahara, K.; Tsukahara, N.; Minamitani, E.; Kim, Y.; Takagi, N.; Kawai, M. Structure of silicene grown on Ag(111). Appl. Phys. Express2012, 5, 045802.

    Google Scholar 

  300. Jamgotchian, H.; Colignon, Y.; Hamzaoui, N.; Ealet, B.; Hoarau, J. Y.; Aufray, B.; Bibérian, J. P. Growth of silicene layers on Ag(111): Unexpected effect of the substrate temperature. J. Phys. Condens. Matter2012, 24, 172001.

    CAS  Google Scholar 

  301. Chen, L.; Liu, C. C.; Feng, B. J.; He, X. Y.; Cheng, P.; Ding, Z. J.; Meng, S.; Yao, Y. G.; Wu, K. H. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett.2012, 109, 056804.

    Google Scholar 

  302. Enriquez, H.; Vizzini, S.; Kara, A.; Lalmi, B.; Oughaddou, H. Silicene structures on silver surfaces. J. Phys. Condens. Matter2012, 24, 314211.

    Google Scholar 

  303. Resta, A.; Leoni, T.; Barth, C.; Ranguis, A.; Becker, C.; Bruhn, T.; Vogt, P.; Le Lay, G. Atomic structures of silicene layers grown on Ag(111): Scanning tunneling microscopy and noncontact atomic force microscopy observations. Sci. Rep.2013, 3, 3298.

    Google Scholar 

  304. Sone, J.; Yamagami, T.; Aoki, Y.; Nakatsuji, K.; Hirayama, H. Epitaxial growth of silicene on ultra-thin Ag(111) films. New J. Phys.2014, 16, 095004.

    Google Scholar 

  305. Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol.2015, 10, 227–231.

    CAS  Google Scholar 

  306. Grazianetti, C.; Chiappe, D.; Cinquanta, E.; Fanciulli, M.; Molle, A. Nucleation and temperature-driven phase transitions of silicene superstructures on Ag(111). J. Phys. Condens. Matter2015, 27, 255005.

    CAS  Google Scholar 

  307. Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett.2012, 108, 245501.

    Google Scholar 

  308. Aizawa, T.; Suehara, S.; Otani, S. Silicene on zirconium carbide (111). J. Phys. Chem. C2014, 118, 23049–23057.

    CAS  Google Scholar 

  309. Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater.2014, 26, 2096–2101.

    CAS  Google Scholar 

  310. Podsiadly-Paszkowska, A.; Krawiec, M. Dirac fermions in silicene on Pb(111) surface. Phys. Chem. Chem. Phys.2015, 17, 2246–2251.

    CAS  Google Scholar 

  311. Morishita, T.; Spencer, M. J. S.; Kawamoto, S.; Snook, I. K. A new surface and structure for silicene: Polygonal silicene formation on the Al(111) surface. J. Phys. Chem. C2013, 117, 22142–22148.

    CAS  Google Scholar 

  312. Bhattacharya, A.; Bhattacharya, S.; Das, G. P. Exploring semiconductor substrates for silicene epitaxy. Appl. Phys. Lett.2013, 103, 123113.

    Google Scholar 

  313. Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M. C.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous germanene layer on Al(111). Nano Lett.2015, 15, 2510–2516.

    CAS  Google Scholar 

  314. Stephan, R.; Hanf, M. C.; Derivaz, M.; Dentel, D.; Asensio, M. C.; Avila, J.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Germanene on Al(111): Interface electronic states and charge transfer. J. Phys. Chem. C2016, 120, 1580–1585.

    CAS  Google Scholar 

  315. Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys.2014, 16, 095002.

    Google Scholar 

  316. Dávila, M. E.; Le Lay, G. Few layer epitaxial germanene: A novel two-dimensional Dirac material. Sci. Rep.2016, 6, 20714.

    Google Scholar 

  317. Bampoulis, P.; Zhang, L.; Safaei, A.; van Gastel, R.; Poelsema, B.; Zandvliet, H. J. W. Germanene termination of Ge2Pt crystals on Ge(110). J. Phys. Condens. Matter2014, 26, 442001.

    CAS  Google Scholar 

  318. Acun, A.; Zhang, L.; Bampoulis, P.; Farmanbar, M.; van Houselt, A.; Rudenko, A. N.; Lingenfelder, M.; Brocks, G.; Poelsema, B.; Katsnelson, M. I. et al. Germanene: The germanium analogue of graphene. J. Phys. Condens. Matter2015, 27, 443002.

    CAS  Google Scholar 

  319. Zhang, L.; Bampoulis, P.; Rudenko, A. N.; Yao, Q.; van Houselt, A.; Poelsema, B.; Katsnelson, M. I.; Zandvliet, H. J. W. Structural and electronic properties of germanene on MoS2. Phys. Rev. Lett.2016, 117, 256804.

    Google Scholar 

  320. Gou, J.; Zhong, Q.; Sheng, S. X.; Li, W. B.; Cheng, P.; Li, H.; Chen, L.; Wu, K. H. Strained monolayer germanene with 1 × 1 lattice on Sb(111). 2D Mater.2016, 3, 045005.

    Google Scholar 

  321. Massara, N.; Marjaoui, A.; Stephan, R.; Hanf, M. C.; Derivaz, M.; Dentel, D.; Hajjar-Garreau, S.; Mehdaoui, A.; Diani, M.; Sonnet, P. et al. Experimental molecular adsorption: Electronic buffer effect of germanene on Al(111). 2D Mater.2019, 6, 035016.

    CAS  Google Scholar 

  322. Ni, Z. Y.; Minamitani, E.; Ando, Y.; Watanabe, S. Germanene and stanene on two-dimensional substrates: Dirac cone and Z2 invariant. Phys. Rev. B2017, 96, 075427.

    Google Scholar 

  323. Gao, J. F.; Zhang, G.; Zhang, Y. W. Exploring Ag(111) substrate for epitaxially growing monolayer stanene: A first-principles study. Sci. Rep.2016, 6, 29107.

    CAS  Google Scholar 

  324. Gou, J.; Kong, L. J.; Li, H.; Zhong, Q.; Li, W. B.; Cheng, P.; Chen, L.; Wu, K. H. Strain-induced band engineering in monolayer stanene on Sb(111). Phys. Rev. Mater.2017, 1, 054004.

    Google Scholar 

  325. Deng, J. L.; Xia, B. Y.; Ma, X. C.; Chen, H. Q.; Shan, H.; Zhai, X. F.; Li, B.; Zhao, A. D.; Xu, Y.; Duan, W. H. et al. Epitaxial growth of ultraflat stanene with topological band inversion. Nat. Mater.2018, 17, 1081–1086.

    CAS  Google Scholar 

  326. Yuhara, J.; He, B. J.; Matsunami, N.; Nakatake, M.; Le Lay, G. Graphene’s latest cousin: Plumbene epitaxial growth on a “nano watercube”. Adv. Mater.2019, 31, 1901017.

    Google Scholar 

  327. Zhang, J. L.; Zhao, S. T.; Han, C.; Wang, Z. Z.; Zhong, S.; Sun, S.; Guo, R.; Zhou, X.; Gu, C. D.; Di Yuan, K. et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett.2016, 16, 4903–4908.

    CAS  Google Scholar 

  328. Zhang, J. L.; Zhao, S. T.; Sun, S.; Niu, T. C.; Zhou, X.; Gu, C. D.; Han, C.; Di Yuan, K.; Guo, R.; Wang, L. et al. Phosphorus nanostripe arrays on Cu(110): A case study to understand the substrate effect on the phosphorus thin film growth. Adv. Mater. Interfaces2017, 4, 1601167.

    Google Scholar 

  329. Fortin-Deschenes, M.; Moutanabbir, O. Recovering the semiconductor properties of the epitaxial group V 2D materials antimonene and arsenene. J. Phys. Chem. C2018, 122, 9162–9168.

    CAS  Google Scholar 

  330. Fortin-Deschênes, M.; Waller, O.; Menteş, T. O.; Locatelli, A.; Mukherjee, S.; Genuzio, F.; Levesque, P. L.; Hébert, A.; Martel, R.; Moutanabbir, O. Synthesis of antimonene on germanium. Nano Lett.2017, 17, 4970–4975.

    Google Scholar 

  331. Mao, Y. H.; Zhang, L. F.; Wang, H. L.; Shan, H.; Zhai, X. F.; Hu, Z. P.; Zhao, A. D.; Wang, B. Epitaxial growth of highly strained antimonene on Ag(111). Front. Phys.2018, 13, 138106.

    Google Scholar 

  332. Chen, H. A.; Sun, H.; Wu, C. R.; Wang, Y. X.; Lee, P. H.; Pao, C. W.; Lin, S. Y. Single-crystal antimonene films prepared by molecular beam epitaxy: Selective growth and contact resistance reduction of the 2D material heterostructure. ACS Appl. Mater. Interfaces2018, 10, 15058–15064.

    CAS  Google Scholar 

  333. Wu, X.; Shao, Y.; Liu, H.; Feng, Z. L.; Wang, Y. L.; Sun, J. T.; Liu, C.; Wang, J. O.; Liu, Z. L.; Zhu, S. Y. et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater.2017, 29, 1605407.

    Google Scholar 

  334. Walker, E. S.; Na, S. R.; Jung, D.; March, S. D.; Kim, J. S.; Trivedi, T.; Li, W.; Tao, L.; Lee, M. L.; Liechti, K. M. et al. Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett.2016, 16, 6931–6938.

    CAS  Google Scholar 

  335. Ismail, R. A.; Hassoon, K. I.; Abdulrazzaq, O. A. Elicitation of barrier height of rapid thermal annealed Bi-nSi Schottky photodetector using various methods: A comparative study. Optik2019, 188, 46–51.

    CAS  Google Scholar 

  336. Nagao, T.; Sadowski, J. T.; Saito, M.; Yaginuma, S.; Fujikawa, Y.; Kogure, T.; Ohno, T.; Hasegawa, Y.; Hasegawa, S.; Sakurai, T. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7 × 7. Phys. Rev. Lett.2004, 93, 105501.

    CAS  Google Scholar 

  337. Nagao, T.; Yaginuma, S.; Saito, M.; Kogure, T.; Sadowski, J. T.; Ohno, T.; Hasegawa, S.; Sakurai, T. Strong lateral growth and crystallization via two-dimensional allotropic transformation of semi-metal Bi film. Surf. Sci.2005, 590, 247–252.

    Google Scholar 

  338. Kammler, M.; Horn-von Hoegen, M. Low energy electron diffraction of epitaxial growth of bismuth on Si(111). Surf. Sci.2005, 576, 56–60.

    CAS  Google Scholar 

  339. Pan, S. W.; Qi, D. F.; Chen, S. Y.; Li, C.; Huang, W.; Lai, H. K. Se ultrathin film growth on Si(100) substrate and its application in Ti/n-Si(100) ohmic contact. Acta Phys. Sin.2011, 60, 712–716.

    Google Scholar 

  340. Luo, L. B.; Yang, X. B.; Liang, F. X.; Jie, J. S.; Li, Q.; Zhu, Z. F.; Wu, C. Y.; Yu, Y. Q.; Wang, L. Transparent and flexible selenium nanobelt-based visible light photodetector. Crystengcomm2012, 14, 1942–1947.

    CAS  Google Scholar 

  341. Zheng, L. X.; Hu, K.; Teng, F.; Fang, X. S. Novel UV–visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2nanotubes heterojunction. Small2017, 13, 1602448.

    Google Scholar 

  342. Hu, K.; Teng, F.; Zheng, L. X.; Yu, P. P.; Zhang, Z. M.; Chen, H. Y.; Fang, X. S. Binary response Se/ZnO p-n heterojunction UV photodetector with high on/off ratio and fast speed. Laser Photonics Rev.2017, 11, 1600257.

    Google Scholar 

  343. Yang, W.; Hu, K.; Teng, F.; Weng, J. H.; Zhang, Y.; Fang, X. S. High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type II Se/n-Si heterojunctions. Nano Lett.2018, 18, 4697–4703.

    CAS  Google Scholar 

  344. Qin, J. K.; Yan, H.; Qiu, G.; Si, M. W.; Miao, P.; Duan, Y. Q.; Shao, W. Z.; Zhen, L.; Xu, C. Y.; Ye, P. D. Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures. Nano Res.2019, 12, 669–674.

    CAS  Google Scholar 

  345. Chang, Y.; Chen, L.; Wang, J. Y.; Tian, W.; Zhai, W.; Wei, B. B. Self-powered broadband schottky junction photodetector based on a single selenium microrod. J. Phys. Chem. C2019, 123, 21244–21251.

    CAS  Google Scholar 

  346. Chen, Y. Z.; You, Y. T.; Chen, P. J.; Li, D. P.; Su, T. Y.; Lee, L.; Shih, Y. C.; Chen, C. W.; Chang, C. C.; Wang, Y. C. et al. Environmentally and mechanically stable selenium 1D/2D hybrid structures for broad-range photoresponse from ultraviolet to infrared wavelengths. ACS Appl. Mater. Interfaces2018, 10, 35477–35486.

    CAS  Google Scholar 

  347. Chen, J. L.; Dai, Y. W.; Ma, Y. Q.; Dai, X. Q.; Ho, W.; Xie, M. H. Ultrathin β-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale2017, 9, 15945–15948.

    CAS  Google Scholar 

  348. Hegazy, M.; Refaat, T.; Abedin, N.; Elsayed-Ali, H. Quantum-dot infrared photodetector fabricated by pulsed laser deposition technique. J. Laser Micro/Nanoen.2006, 1, 111–114.

    CAS  Google Scholar 

  349. Carter, A. C.; Horwitz, J. S.; Chrisey, D. B.; Pond, J. M.; Kirchoefer, S. W.; Chang, W. T. Pulsed laser deposition of ferroelectric thin films for room temperature active microwave electronics. Integr. Ferroelectr.1997, 17, 273–285.

    CAS  Google Scholar 

  350. Yang, Z. B.; Hao, J. H.; Yuan, S. G.; Lin, S. H.; Yau, H. M.; Dai, J. Y.; Lau, S. P. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater.2015, 27, 3748–3754.

    CAS  Google Scholar 

  351. Apte, A.; Bianco, E.; Krishnamoorthy, A.; Yazdi, S.; Rao, R.; Glavin, N.; Kumazoe, H.; Varshney, V.; Roy, A.; Shimojo, F. et al. Polytypism in ultrathin tellurium. 2D Mater.2019, 6, 015013.

    CAS  Google Scholar 

  352. Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed.2015, 54, 15473–15477.

    CAS  Google Scholar 

  353. Sofer, Z.; Sedmidubsky, D.; Huber, Š.; Luxa, J.; Bouša, D.; Boothroyd, C.; Pumera, M. Layered black phosphorus: Strongly anisotropic magnetic, electronic, and electron-transfer properties. Angew. Chem., Int. Ed.2016, 55, 3382–3386.

    CAS  Google Scholar 

  354. Smith, J. B.; Hagaman, D.; Ji, H. F. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology2016, 27, 215602.

    Google Scholar 

  355. Xie, C.; Mak, C.; Tao, X. M.; Yan, F. Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater.2017, 27, 1603886.

    Google Scholar 

  356. Li, H. L.; Jing, L.; Liu, W. W.; Lin, J. J.; Tay, R. Y.; Tsang, S. H.; Teo, E. H. T. Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano2018, 12, 1262–1272.

    CAS  Google Scholar 

  357. Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O’Brien, P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun.2014, 50, 13338–13341.

    CAS  Google Scholar 

  358. Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater.2015, 27, 1887–1892.

    CAS  Google Scholar 

  359. Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun.2015, 6, 8563.

    CAS  Google Scholar 

  360. Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J. H.; Liu, X. L.; Chen, K. S.; Hersam, M. C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano2015, 9, 3596–3604.

    CAS  Google Scholar 

  361. Kang, J.; Wells, S. A.; Wood, J. D.; Lee, J. H.; Liu, X. L.; Ryder, C. R.; Zhu, J.; Guest, J. R.; Husko, C. A.; Hersam, M. C. Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. USA2016, 113, 11688–11693.

    CAS  Google Scholar 

  362. Wang, H.; Yang, X. Z.; Shao, W.; Chen, S. C.; Xie, J. F.; Zhang, X. D.; Wang, J.; Xie, Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc.2015, 137, 11376–11382.

    CAS  Google Scholar 

  363. Woomer, A. H.; Farnsworth, T. W.; Hu, J.; Wells, R. A.; Donley, C. L.; Warren, S. C. Phosphorene: Synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano2015, 9, 8869–8884.

    CAS  Google Scholar 

  364. Beladi-Mousavi, S. M.; Pourrahimi, A. M.; Sofer, Z.; Pumera, M. Atomically thin 2D-arsenene by liquid-phased exfoliation: Toward selective vapor sensing. Adv. Funct. Mater.2019, 29, 1807004.

    Google Scholar 

  365. Qi, Z. H.; Hu, Y.; Jin, Z.; Ma, J. Tuning the liquid-phase exfoliation of arsenic nanosheets by interaction with various solvents. Phys. Chem. Chem. Phys.2019, 21, 12087–12090.

    CAS  Google Scholar 

  366. Gibaja, C.; Rodriguez-San-Miguel, D.; Ares, P.; Gómez-Herrero, J.; Varela, M.; Gillen, R.; Maultzsch, J.; Hauke, F.; Hirsch, A.; Abellán, G. et al. Few-layer antimonene by liquid-phase exfoliation. Angew. Chem., Int. Ed.2016, 55, 14345–14349.

    CAS  Google Scholar 

  367. Gu, J. N.; Du, Z. G.; Zhang, C.; Ma, J. G.; Li, B.; Yang, S. B. Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv. Energy Mater.2017, 7, 1700447.

    Google Scholar 

  368. Yang, Q. Q.; Liu, R. T.; Huang, C.; Huang, Y. F.; Gao, L. F.; Sun, B.; Huang, Z. P.; Zhang, L.; Hu, C. X.; Zhang, Z. Q. et al. 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers. Nanoscale2018, 10, 21106–21115.

    CAS  Google Scholar 

  369. Zhang, Y. Y.; Rui, X. H.; Tang, Y. X.; Liu, Y. Q.; Wei, J. Q.; Chen, S.; Leow, W. R.; Li, W. L.; Liu, Y. J.; Deng, J. Y. et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater.2016, 6, 1502409.

    Google Scholar 

  370. Kumar, P.; Singh, J.; Pandey, A. C. Rational low temperature synthesis and structural investigations of ultrathin bismuth nanosheets. RSC Adv.2013, 3, 2313–2317.

    CAS  Google Scholar 

  371. Ranjan, P.; Sahu, T. K.; Bhushan, R.; Yamijala, S. S. R. K. C.; Late, D. J.; Kumar, P.; Vinu, A. Freestanding borophene and its hybrids. Adv. Mater.2019, 31, 1900353.

    Google Scholar 

  372. Ambrosi, A.; Sofer, Z.; Pumera, M. Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem., Int. Ed.2017, 56, 10443–10445.

    CAS  Google Scholar 

  373. Xiao, H.; Zhao, M.; Zhang, J. J.; Ma, X. F.; Zhang, J.; Hu, T. J.; Tang, T.; Jia, J. F.; Wu, H. S. Electrochemical cathode exfoliation of bulky black phosphorus into few-layer phosphorene nanosheets. Electrochem. Commun.2018, 89, 10–13.

    CAS  Google Scholar 

  374. Tchalala, M. R.; Ali, M. A.; Enriquez, H.; Kara, A.; Lachgar, A.; Yagoubi, S.; Foy, E.; Vega, E.; Bendounan, A.; Silly, M. G. et al. Silicon sheets by redox assisted chemical exfoliation. J. Phys. Condens. Matter2013, 25, 442001.

    Google Scholar 

  375. Nakano, H.; Mitsuoka, T.; Harada, M.; Horibuchi, K.; Nozaki, H.; Takahashi, N.; Nonaka, T.; Seno, Y.; Nakamura, H. Soft synthesis of single-crystal silicon monolayer sheets. Angew. Chem., Int. Ed.2006, 45, 6303–6306.

    CAS  Google Scholar 

  376. Li, F. W.; Xue, M. Q.; Li, J. Z.; Ma, X. L.; Chen, L.; Zhang, X. J.; MacFarlane, D. R.; Zhang, J. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angew. Chem., Int. Ed.2017, 56, 14718–14722.

    CAS  Google Scholar 

  377. Pei, J. J.; Gai, X.; Yang, J.; Wang, X. B.; Yu, Z. F.; Choi, D. Y.; Luther-Davies, B.; Lu, Y. R. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun.2016, 7, 10450.

    CAS  Google Scholar 

  378. Han, Z. J.; Murdock, A. T.; Seo, D. H.; Bendavid, A. Recent progress in plasma-assisted synthesis and modification of 2D materials. 2D Mater.2018, 5, 032002.

    Google Scholar 

  379. Tsai, H. S.; Hsiao, C. H.; Lin, Y. P.; Chen, C. W.; Ouyang, H.; Liang, J. H. Fabrication of multilayer borophene on insulator structure. Small2016, 12, 5251–5255.

    CAS  Google Scholar 

  380. Tsai, H. S.; Hsiao, C. H.; Chen, C. W.; Ouyang, H.; Liang, J. H. Synthesis of nonepitaxial multilayer silicene assisted by ion implantation. Nanoscale2016, 8, 9488–9492.

    CAS  Google Scholar 

  381. Tsai, H. S.; Chen, Y. Z.; Medina, H.; Su, T. Y.; Chou, T. S.; Chen, Y. H.; Chueh, Y. L.; Liang, J. H. Direct formation of large-scale multi-layered germanene on Si substrate. Phys. Chem. Chem. Phys.2015, 17, 21389–21393.

    CAS  Google Scholar 

  382. Kang, D. H.; Jeon, M. H.; Jang, S. K.; Choi, W. Y.; Kim, K. N.; Kim, J.; Lee, S.; Yeom, G. Y.; Park, J. H. Self-assembled layer (SAL)-based doping on black phosphorus (BP) transistor and photodetector. ACS Photonics2017, 4, 1822–1830.

    CAS  Google Scholar 

  383. Jia, J. Y.; Jang, S. K.; Lai, S.; Xu, J.; Choi, Y. J.; Park, J. H.; Lee, S. Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS Nano2015, 9, 8729–8736.

    CAS  Google Scholar 

  384. Tsai, H. S.; Wang, S. W.; Hsiao, C. H.; Chen, C. W.; Ouyang, H.; Chueh, Y. L.; Kuo, H. C.; Liang, J. H. Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem. Mater.2016, 28, 425–429.

    CAS  Google Scholar 

  385. Tsai, H. S.; Chen, C. W.; Hsiao, C. H.; Ouyang, H.; Liang, J. H. The advent of multilayer antimonene nanoribbons with room temperature orange light emission. Chem. Commun.2016, 52, 8409–8412.

    CAS  Google Scholar 

  386. Li, J. H.; Niu, L. Y.; Zheng, Z. J.; Yan, F. Photosensitive graphene transistors. Adv. Mater.2014, 26, 5239–5273.

    CAS  Google Scholar 

  387. Sun, Z. H.; Chang, H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano2014, 8, 4133–4156.

    CAS  Google Scholar 

  388. Lauer, R. B.; Williams, F. Photoelectronic properties of graded composition crystals of II-VI semiconductors. J. Appl. Phys.1971, 42, 2904–2910.

    CAS  Google Scholar 

  389. Qin, J. K.; Qiu, G.; Jian, J.; Zhou, H.; Yang, L. M.; Charnas, A.; Zemlyanov, D. Y.; Xu, C. Y.; Xu, X. F.; Wu, W. Z. et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. ACS Nano2017, 11, 10222–10229.

    CAS  Google Scholar 

  390. Wu, J.; Koon, G. K. W.; Xiang, D.; Han, C.; Toh, C. T.; Kulkarni, E. S.; Verzhbitskiy, I.; Carvalho, A.; Rodin, A. S.; Koenig, S. P. et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano2015, 9, 8070–8077.

    CAS  Google Scholar 

  391. Suess, R. J.; Leong, E.; Garrett, J. L.; Zhou, T.; Salem, R.; Munday, J. N.; Murphy, T. E.; Mittendorff, M. Mid-infrared time-resolved photoconduction in black phosphorus. 2D Mater.2016, 3, 041006.

    Google Scholar 

  392. Huang, M. Q.; Wang, M. L.; Chen, C.; Ma, Z. W.; Li, X. F.; Han, J. B.; Wu, Y. Q. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater.2016, 28, 3481–3485.

    CAS  Google Scholar 

  393. Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol.2010, 5, 391–400.

    CAS  Google Scholar 

  394. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol.2012, 7, 363–368.

    CAS  Google Scholar 

  395. Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater.2012, 24, 5878–5883.

    CAS  Google Scholar 

  396. Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett.2016, 16, 4648–4655.

    CAS  Google Scholar 

  397. Liu, Y. D.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic. Adv. Funct. Mater.2017, 27, 1604638.

    Google Scholar 

  398. Wang, J. Y.; Chang, Y.; Huang, L. F.; Jin, K. X.; Tian, W. Designing CdS/Se heterojunction as high-performance self-powered UV–visible broadband photodetector. APL Mater.2018, 6, 076106.

    Google Scholar 

  399. Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv.2017, 3, e1700589.

    Google Scholar 

  400. Xu, X. D.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett.2010, 10, 562–566.

    CAS  Google Scholar 

  401. Song, J. C. W.; Rudner, M. S.; Marcus, C. M.; Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett.2011, 11, 4688–4692.

    CAS  Google Scholar 

  402. Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol.2015, 10, 707–713.

    CAS  Google Scholar 

Download references

Acknowledgements

The research was partially supported by the Financial supports from the Science and Technology Development Fund (Nos. 007/2017/A1 and 132/2017/A3), Macao Special Administration Region (SAR), China, and the National Natural Science Foundation of China (Nos. 61875138, 61435010, and 61961136001), Guangdong Natural Science Foundation of China (No. 2019A1515010007) and Science, and Technology Innovation Commission of Shenzhen (Nos. JCYJ20190808175605495 and JCYJ20170811093453105). Authors also acknowledge the support from Instrumental Analysis Center of Shenzhen University (Xili Campus).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoling Luo or Han Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhong, S., Ge, Y. et al. Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene. Nano Res. 13, 891–918 (2020). https://doi.org/10.1007/s12274-020-2749-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2749-1

Keywords

Navigation