Skip to main content
Log in

DNA origami mediated electrically connected metal—semiconductor junctions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 16 June 2021

This article has been updated

Abstract

DNA-based nanofabrication of inorganic nanostructures has potential application in electronics, catalysis, and plasmonics. Previous DNA metallization has generated conductive DNA-assembled nanostructures; however, the use of semiconductors and the development of well-connected nanoscale metal—semiconductor junctions on DNA nanostructures are still at an early stage. Herein, we report the first fabrication of multiple electrically connected metal—semiconductor junctions on individual DNA origami by location-specific binding of gold and tellurium nanorods. Nanorod attachment to DNA origami was via DNA hybridization for Au and by electrostatic interaction for Te. Electroless gold plating was used to create nanoscale metal—semiconductor interfaces by filling the gaps between Au and Te nanorods. Two-point electrical characterization indicated that the Au—Te—Au junctions were electrically connected, with current—voltage properties consistent with a Schottky junction. DNA-based nanofabrication of metal—semiconductor junctions opens up potential opportunities in nanoelectronics, demonstrating the power of this bottom-up approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

    Article  CAS  Google Scholar 

  2. Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2016, 2, e1600069.

    Article  Google Scholar 

  3. Al-Ta’ii, H. M.; Periasamy, V.; Amin, Y. M. Electronic properties of DNA-based Schottky barrier diodes in response to alpha particles. Sensors 2015, 15, 11836–11853.

    Article  Google Scholar 

  4. Dutta, S. K.; Mehetor, S. K.; Pradhan, N. Metal semiconductor heterostructures for photocatalytic conversion of light energy. J. Phys. Chem. Lett. 2015, 6, 936–944.

    Article  CAS  Google Scholar 

  5. Al-Ta’ii, H. M. J.; Periasamy, V.; Amin, Y. M. Detection of alpha particles using DNA/Al Schottky junctions. J. Appl. Phys. 2015, 118, 114502.

    Article  Google Scholar 

  6. Ye, J. J.; Helmi, S.; Teske, J.; Seidel, R. Fabrication of metal nano-structures with programmable length and patterns using a modular DNA platform. Nano Lett. 2019, 19, 2707–2714.

    Article  CAS  Google Scholar 

  7. Hui, L. W.; Zhang, Q. M.; Deng, W.; Liu, H. T. DNA-based nanofabrication: Pathway to applications in surface engineering. Small 2019, 15, 1805428.

    Article  Google Scholar 

  8. Halley, P. D.; Patton, R. A.; Chowdhury, A.; Byrd, J. C.; Castro, C. E. Low-cost, simple, and scalable self-assembly of DNA origami nanostructures. Nano Res. 2019, 12, 1207–1215.

    Article  CAS  Google Scholar 

  9. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

    Article  CAS  Google Scholar 

  10. Liu, J. F.; Geng, Y. L.; Pound, E.; Gyawali, S.; Ashton, J. R.; Hickey, J.; Woolley, A. T.; Harb, J. N. Metallization of branched DNA origami for nanoelectronic circuit fabrication. ACS Nano 2011, 5, 2240–2247.

    Article  CAS  Google Scholar 

  11. Chen, Z. W.; Liu, C. Q.; CaO, F. F.; Ren, J. S.; Qu, X. G. DNA metallization: Principles, methods, structures, and applications. Chem. Soc. Rev. 2018, 47, 4017–4072.

    Article  CAS  Google Scholar 

  12. Uprety, B.; Westover, T.; Stoddard, M.; Brinkerhoff, K.; Jensen, J.; Davis, R. C.; Woolley, A. T.; Harb, J. N. Anisotropic electroless deposition on DNA origami templates to form small diameter conductive nanowires. Langmuir 2017, 33, 726–735.

    Article  CAS  Google Scholar 

  13. Uprety, B.; Jensen, J.; Aryal, B. R.; Davis, R. C.; Woolley, A. T.; Harb, J. N. Directional growth of DNA-functionalized nanorods to enable continuous, site-specific metallization of DNA origami templates. Langmuir 2017, 33, 10143–10152.

    Article  CAS  Google Scholar 

  14. Geng, Y. L.; Pearson, A. C.; Gates, E. P.; Uprety, B.; Davis, R. C.; Harb, J. N; Woolley, A. T. Electrically conductive gold- and copper-metallized DNA origami nanostructures. Langmuir 2013, 29, 3482–3490.

    Article  CAS  Google Scholar 

  15. Hossen, M. M.; Bendickson, L.; Palo P. E.; Yao, Z. Q.; Nilsen-Hamilton, M.; Hillier, A. C. Creating metamaterial building blocks with directed photochemical metallization of silver onto DNA origami templates. Nanotechnology 2018, 29, 355603.

    Article  Google Scholar 

  16. Shen, B. X.; Linko, V.; Tapio, K.; Kostiainen, M. A.; Toppari, J. J. Custom-shaped metal nanostructures based on DNA origami silhouettes. Nanoscale 2015, 7, 11267–11272.

    Article  CAS  Google Scholar 

  17. Maune, H. T.; Han, S. P.; Barish, R. D.; Bockrath, M.; Goddard III, W. A.; Rothemund, P. W. K.; Winfree, E. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 2010, 5, 61–66.

    Article  CAS  Google Scholar 

  18. Mangalum, A.; Rahman, M.; Norton, M. L. Site-specific immobilization of single-walled carbon nanotubes onto single and one-dimensional DNA origami. J. Am. Chem. Soc. 2013, 135, 2451–2454.

    Article  CAS  Google Scholar 

  19. Bayrak, T.; Helmi, S.; Ye, J. J.; Kauert, D.; Kelling, J.; Schönherr, T.; Weichelt, R.; Erbe, A.; Seidel, R. DNA-mold templated assembly of conductive gold nanowires. Nano Lett. 2018, 18, 2116–2123.

    Article  CAS  Google Scholar 

  20. Aryal, B. R.; Westover, T. R, Ranasinghe, D. R.; Calvopiña, D. G.; Uprety, B.; Harb, J. N.; Davis, R. C.; Woolley, A. T. Four-point probe electrical measurements on templated gold nanowires formed on single DNA origami tiles. Langmuir 2018, 34, 15069–15077.

    Article  CAS  Google Scholar 

  21. Weichelt, R.; Ye, J. J.; Banin, U.; Eychmüller, A.; Seidel, R. DNA-mediated self-assembly and metallization of semiconductor nanorods for the fabrication of nanoelectronic interfaces. Chem.—Eur. J. 2019, 25, 9012–9016.

    Article  CAS  Google Scholar 

  22. Zhu, H. T.; Zhang, H.; Liang, J. K.; Rao, G. H., Li, J. B.; Liu, G. Y.; Du, Z. M.; Fan, H. M.; Luo, J. Controlled synthesis of tellurium nanostructures from nanotubes to nanorods and nanowires and their template applications. J. Phys. Chem. C 2011, 115, 6375–6380.

    Article  CAS  Google Scholar 

  23. Gautam, U. K.; Rao, C. N. R. Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process. J. Mater. Chem. 2004, 14, 2530–2535.

    Article  CAS  Google Scholar 

  24. Goldfarb, R. Tellurium—The Bright Future of Solar Energy; U.S. Department of the Interior, U.S. Geological Survey, 2014.

  25. He, Z.; Yang, Y.; Liu, J. W.; Yu, S. H. Emerging tellurium nanostructures: Controllable synthesis and their applications. Chem. Soc. Rev. 2017, 46, 2732–2753.

    Article  CAS  Google Scholar 

  26. Zhu, Y. J.; Wang, W. W.; Qi, R. J; Hu, X. L. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew. Chem., Int. Ed. 2004, 43, 1410–1414.

    Article  CAS  Google Scholar 

  27. Wang, Q.; Li, G. D.; Liu, Y. L.; Xu, S.; Wang, K. J.; Chen, J. S. Fabrication and growth mechanism of selenium and tellurium nanobelts through a vacuum vapor deposition route. J. Phys. Chem. C 2007, 111, 12926–12932.

    Article  CAS  Google Scholar 

  28. Riley, B. J.; Johnson, B. R.; Schaef, H. T.; Sundaram, S. K. Sublimation-condensation of multiscale tellurium structures. J. Phys. Chem. C 2013, 117, 10128–10134.

    Article  CAS  Google Scholar 

  29. Yang, H. R.; Finefrock, S. W.; Caballero, J. D. A.; Wu, Y. Environmentally benign synthesis of ultrathin metal telluride nanowires. J. Am. Chem. Soc. 2014, 136, 10242–10245.

    Article  CAS  Google Scholar 

  30. Ali, M. R. K.; Snyder, B.; El-Sayed, M. A. Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 2012, 28, 9807–9815.

    Article  CAS  Google Scholar 

  31. Liu, K.; Zheng, Y. H.; Lu, X.; Thai, T.; Lee, N. A.; Bach, U.; Gooding, J. J. Biocompatible gold nanorods: One-step surface functionalization, highly colloidal stability, and low cytotoxicity. Langmuir 2015, 31, 4973–1980.

    Article  CAS  Google Scholar 

  32. Herdt, A. R.; Drawz, S. M.; Kang, Y.; Taton, T. A. DNA dissociation and degradation at gold nanoparticle surfaces. Colloids Surf B Biointerfaces 2006, 51, 130–139.

    Article  CAS  Google Scholar 

  33. Geier, B.; Gspan, C.; Winkler, R.; Schmied, R.; Fowlkes, J. D.; Fitzek, H.; Rauch, S.; Rattenberger, J.; Rack, P. D.; Plank, H. Rapid and highly compact purification for focused electron beam induced deposits: A low temperature approach using electron stimulated H2O reactions. J. Phys. Chem. C 2014, 118, 14009–14016.

    Article  CAS  Google Scholar 

  34. Ananthakumar, S.; Ramkumar, J.; Babu, S. M. Facile synthesis and transformation of Te nanorods to CdTe nanoparticles. Mat. Sci. Semicon. Proc. 2014, 27, 12–18.

    Article  CAS  Google Scholar 

  35. Uprety, B.; Gates, E. P.; Geng, Y. L.; Woolley, A. T.; Harb, J. N. Site-specific metallization of multiple metals on a single DNA origami template. Langmuir 2014, 30, 1134–1141.

    Article  CAS  Google Scholar 

  36. Lin, Z. H.; Lin, Y. W.; Lee, K. H.; Chang, H. T. Selective growth of gold nanoparticles onto tellurium nanowires via a green chemical route. J. Mater. Chem. 2008, 18, 2569–2572.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (No. 1562729) and BYU’s Simmons Research Endowment for support of this work. B. R. A. acknowledges the BYU Department of Chemistry and Biochemistry for a Roland K. Robins Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam T. Woolley.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryal, B.R., Ranasinghe, D.R., Westover, T.R. et al. DNA origami mediated electrically connected metal—semiconductor junctions. Nano Res. 13, 1419–1426 (2020). https://doi.org/10.1007/s12274-020-2672-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2672-5

Keywords

Navigation