Skip to main content
Log in

Compressive surface strained atomic-layer Cu2O on Cu@Ag nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Control of surface structure at the atomic level can effectively tune catalytic properties of nanomaterials. Tuning surface strain is an effective strategy for enhancing catalytic activity; however, the correlation studies between the surface strain with catalytic performance are scant because such mechanistic studies require the precise control of surface strain on catalysts. In this work, a simple strategy of precisely tuning compressive surface strain of atomic-layer Cu2O on Cu@Ag (AL-Cu2O/Cu@Ag) nanoparticles (NPs) is demonstrated. The AL-Cu2O is synthesized by structure evolution of Cu@Ag core-shell nanoparticles, and the precise thickness-control of AL-Cu2O is achieved by tuning the molar ratio of Cu/Ag of the starting material. Aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM) and EELS elemental mapping characterization showed that the compressive surface strain of AL-Cu2O along the [111] and [200] directions can be precisely tuned from 6.5% to 1.6% and 6.6% to 4.7%, respectively, by changing the number of AL-Cu2O layer from 3 to 6. The as-prepared AL-Cu2O/Cu@Ag NPs exhibited excellent catalytic property in the synthesis of azobenzene from aniline, in which the strained 4-layers Cu2O (4.5% along the [111] direction, 6.1% along the [200] direction) exhibits the best catalytic performance. This work may be beneficial for the design and surface engineering of catalysts toward specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    Article  Google Scholar 

  2. Liu, C.; Ma, Z.; Cui, M. Y.; Zhang, Z. Y.; Zhang, X.; Su, D.; Murray, C. B.; Wang, J. X.; Zhang, S. Favorable core/shell interface within Co2P/Pt nanorods for oxygen reduction electrocatalysis. Nano Lett. 2018, 18, 7870–7875.

    Article  Google Scholar 

  3. Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

    Article  Google Scholar 

  4. Mao, J. J.; Chen, W. X.; Sun, W. M.; Chen, Z.; Pei, J. J.; He, D. S.; Lv, C. L.; Wang, D. S.; Li, Y. D. Rational control of the selectivity of a ruthenium catalyst for hydrogenation of 4-nitrostyrene by strain regulation. Angew. Chem., Int. Ed. 2017, 56, 11971–11975.

    Article  Google Scholar 

  5. Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

    Article  Google Scholar 

  6. Tang, C. Y.; Zhang, N.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Xiao, X. H.; Huang, X. Q. Fully tensile strained Pd3Pb/Pd tetragonal nanosheets enhance oxygen reduction catalysis. Nano Lett. 2019, 19, 1336–1342.

    Article  Google Scholar 

  7. Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.

    Article  Google Scholar 

  8. Wang, X. S.; Zhu, Y. H.; Vasileff, A.; Jiao, Y.; Chen, S. M.; Song, L.; Zheng, B.; Zheng, Y.; Qiao, S. Z. Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 1198–1204.

    Article  Google Scholar 

  9. Xue, Y. Y.; Ge, H.; Chen, Z.; Zhai, Y. B.; Zhang, J.; Sun, J. Q.; Abbas, M.; Lin, K.; Zhao, W. T.; Chen, J. G. Effect of strain on the performance of iron-based catalyst in Fischer-Tropsch synthesis. J. Catal. 2018, 358, 237–242.

    Article  Google Scholar 

  10. Zhang, E. H.; Ma, F. F.; Liu, J.; Sun, J. Y.; Chen, W. X.; Rong, H. P.; Zhu, X. Y.; Liu, J. J.; Xu, M.; Zhuang, Z. B. et al. Porous platinum-silver bimetallic alloys: Surface composition and strain tunability toward enhanced electrocatalysis. Nanoscale 2018, 10, 21703–21711.

    Article  Google Scholar 

  11. Zhang, S.; Zhang, X.; Jiang, G. M.; Zhu, H. Y.; Guo, S. J.; Su, D.; Lu, G.; Sun, S. H. Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 2014, 136, 7734–7739.

    Article  Google Scholar 

  12. Zhu, H.; Gao, G. H.; Du, M. L.; Zhou, J. H.; Wang, K.; Wu, W. B.; Chen, X.; Li, Y.; Ma, P. M.; Dong, W. F. et al. Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv. Mater. 2018, 30, e1707301.

    Article  Google Scholar 

  13. Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773–2776.

    Article  Google Scholar 

  14. Khorshidi, A.; Violet, J.; Hashemi, J.; Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 2018, 1, 263–268.

    Article  Google Scholar 

  15. He, J.; Shen, Y. L.; Yang, M. Z.; Zhang, H. X.; Deng, Q. B.; Ding, Y. The effect of surface strain on the CO-poisoned surface of Pt electrode for hydrogen adsorption. J. Catal. 2017, 350, 212–217.

    Article  Google Scholar 

  16. Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruna, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  Google Scholar 

  17. Zhou, G. W.; Ji, H. H.; Bai, Y. H.; Quan, Z. Y.; Xu, X. H. Intrinsic exchange bias effect in strain-engineered single antiferromagnetic LaMnO3 films. Sci. China Mater. 2019, in press, DOI: https://doi.org/10.1007/s40843-018-9387-0.

    Google Scholar 

  18. Wang, C. Y.; Sang, X. H.; Gamler, J. T. L.; Chen, D. P.; Unocic, R. R.; Skrabalak, S. E. Facet-dependent deposition of highly strained alloyed shells on intermetallic nanoparticles for enhanced electrocatalysis. Nano Lett. 2017, 17, 5526–5532.

    Article  Google Scholar 

  19. Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73–76.

    Article  Google Scholar 

  20. Biele, R.; Flores, E.; Ares, J. R.; Sanchez, C.; Ferrer, I. J.; Rubio-Bollinger, G.; Castellanos-Gomez, A.; D’Agosta, R. Strain-induced band gap engineering in layered TiS3. Nano Res. 2017, 11, 225–232.

    Article  Google Scholar 

  21. Yu, Y. S.; Yang, W. W.; Sun, X. L.; Zhu, W. L.; Li, X. Z.; Sellmyer, D. J.; Sun, S. H. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 2014, 14, 2778–2782.

    Article  Google Scholar 

  22. Chen, W.; Li, L. L.; Peng, Q.; Li, Y. D. Polyol synthesis and chemical conversion of Cu2O nanospheres. Nano Res. 2012, 5, 320–326.

    Article  Google Scholar 

  23. Rice, K. P.; Walker, E. J. Jr.; Stoykovich, M. P.; Saunders, A. E. Solvent-dependent surface plasmon response and oxidation of copper nanocrystals. J. Phy. Chem. C 2011, 115, 1793–1799.

    Article  Google Scholar 

  24. Kong, L. N.; Chen, W.; Ma, D. K.; Yang, Y.; Liu, S. S.; Huang, S. M. Size control of Au@Cu2O octahedra for excellent photocatalytic performance. J. Mater. Chem. 2012, 22, 719–724.

    Article  Google Scholar 

  25. Feng, Y. G.; Shao, Q.; Huang, B. L.; Zhang, J. B.; Huang, X. Q. Surface engineering at the interface of core/shell nanoparticles promotes hydrogen peroxide generation. Nat. Sci. Rev. 2018, 5, 895–906.

    Article  Google Scholar 

  26. Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.

    Article  Google Scholar 

  27. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, in press, DOI: https://doi.org/10.1007/s12274-019-2345-4.

    Google Scholar 

  28. Muzikansky, A.; Nanikashvili, P.; Grinblat, J.; Zitoun, D. Ag dewetting in Cu@Ag monodisperse core-shell nanoparticles. J. Phys. Chem. C 2013, 117, 3093–3100.

    Article  Google Scholar 

  29. Osowiecki, W. T.; Ye, X. C.; Satish, P.; Bustillo, K. C.; Clark, E. L.; Alivisatos, A. P. Tailoring morphology of Cu-Ag nanocrescents and core-shell nanocrystals guided by a thermodynamic model. J. Am. Chem. Soc. 2018, 140, 8569–8577.

    Article  Google Scholar 

  30. Liu, S. J.; Sun, Z. H.; Liu, Q. H.; Wu, L. H.; Huang, Y. Y.; Yao, T.; Zhang, J.; Hu, T. D.; Ge, M. R.; Hu, F. C. et al. Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles. ACS Nano 2014, 8, 1886–1892.

    Article  Google Scholar 

  31. Masaharu, T.; Sachie, H.; Yoshiyuki, S.; Misao, H. Preparation of Cu@Ag core-shell nanoparticles using a two-step polyol process under bubbling of N2 gas. Chem. Lett. 2009, 38, 518–519.

    Article  Google Scholar 

  32. Pellarin, M.; Issa, I.; Langlois, C.; Lebeault, M. A.; Ramade, J.; Lermé, J.; Broyer, M.; Cottancin, E. Plasmon spectroscopy and chemical structure of small bimetallic Cu(1-x)Agx Clusters. J. Phy. Chem. C 2015, 119, 5002–5012.

    Article  Google Scholar 

  33. Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387–1392.

    Article  Google Scholar 

  34. Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Tailoring light-matter-spin interactions in colloidal hetero-nanostructures. Nature 2010, 466, 91–95.

    Article  Google Scholar 

  35. Li, W. Y.; Camargo, P. H. C.; Lu, X. M.; Xia, Y. N. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 2009, 9, 485–490.

    Article  Google Scholar 

  36. Wang, P. T.; Qiao, M.; Shao, Q.; Pi, Y. C.; Zhu, X.; Li, Y. F.; Huang, X. Q. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 4933.

    Article  Google Scholar 

  37. Fu, L.; Shang, C. Q.; Ma, J.; Zhang, C. J.; Zang, X.; Chai, J. C.; Li, J. D.; Cui, G. L. Cu2GeS3 derived ultrafine nanoparticles as high-performance anode for sodium ion battery. Sci. China Mater. 2018, 61, 1177–1184.

    Article  Google Scholar 

  38. Yin, M.; Wu, C. K.; Lou, Y. B.; Burda, C.; Koberstein, J. T.; Zhu, Y. M.; O’Brien, S. Copper oxide nanocrystals. J. Am. Chem. Soc. 2005, 127, 9506–9511.

    Article  Google Scholar 

  39. Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.

    Article  Google Scholar 

  40. Cai, W. P.; Zhong, H. C.; Zhang, L. D. Optical measurements of oxidation behavior of silver nanometer particle within pores of silica host. J. Appl. Phys. 1998, 83, 1705–1710.

    Article  Google Scholar 

  41. Erasmus, E.; Thüne, P. C.; Verhoeven, M. W. G. M.; Niemantsverdriet, J. W.; Swarts, J. C. A new approach to silver-catalysed aerobic oxidation of octadecanol: Probing catalysts utilising a flat, two-dimensional silicon-based model support system. Catal. Commun. 2012, 27, 193–199.

    Article  Google Scholar 

  42. Jiang, X.; Liu, Y.; Wang, J. X.; Wang, Y. F.; Xiong, Y. X.; Liu, Q.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M. et al. 1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res. 2019, 12, 323–329.

    Article  Google Scholar 

  43. Stewart, I. E.; Ye., S. R.; Chen, Z. F.; Flowers, P. F.; Wiley, B. J. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt Core-shell nanowires and their use in transparent conducting films. Chem. Mater. 2015, 27, 7788–7794.

    Article  Google Scholar 

  44. Dai, Y. T.; Li, C.; Shen, Y. B.; Lim, T; Xu, J.; Li, Y. W.; Niemantsverdriet, H.; Besenbacher, F.; Lock, N.; Su, R. Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4. Nat. Commun. 2018, 9, 60.

    Article  Google Scholar 

  45. Grirrane, A.; Corma, C.; García, H. Gold-catalyzed synthesis of aromatic Azo compounds from anilines and nitroaromatics. Science 2008, 322, 1661–1664.

    Article  Google Scholar 

  46. Dutta, B.; Biswas, S.; Sharma, V.; Savage, N. O.; Alpay, S. P.; Suib, S. L. Mesoporous manganese oxide catalyzed aerobic oxidative coupling of anilines to aromatic azo compounds. Angew. Chem. 2016, 128, 2211–2215.

    Article  Google Scholar 

  47. Cai, S. F.; Rong, H. P.; Yu, X. F.; Liu, X. W.; Wang, D. S.; He, W.; Li, Y. D. Room temperature activation of oxygen by monodispersed metal nanoparticles: Oxidative dehydrogenative coupling of anilines for azobenzene syntheses. ACS Catal. 2013, 3, 478–486.

    Article  Google Scholar 

  48. Guo, X. N.; Hao, C. H.; Jin, G. Q.; Zhu, H. Y.; Guo, X. Y. Copper Nanoparticles on Graphene Support: An efficient photocatalyst for coupling of nitroaromatics in visible light. Angew. Chem., Int. Ed. 2014, 53, 1973–1977.

    Article  Google Scholar 

  49. Hung, L. I.; Tsung, C. K.; Huang, W. Y.; Yang, P. D. Room-temperature formation of hollow Cu2O nanoparticles. Adv. Mater. 2010, 22, 1910–1914.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51631001, 21643003, 51872030, 51702016, and 51501010), Fundamental Research Funds for the Central Universities, Beijing Institute of Technology Research Fund Program for Young Scholars and ZDKT18-01 from State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology). The characterization results were supported by Beijing Zhongkebaice Technology Service Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongpan Rong or Jiatao Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Rong, H., Zhang, X. et al. Compressive surface strained atomic-layer Cu2O on Cu@Ag nanoparticles. Nano Res. 12, 1187–1192 (2019). https://doi.org/10.1007/s12274-019-2380-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2380-1

Keywords

Navigation