Skip to main content
Log in

Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Elliptical metallic nanohole arrays possess much higher transmission and enhanced sensitivity compared with circular nanohole arrays. However, fabricating elliptical metallic nanohole arrays in large area with highly tunable aspect ratio remains a challenge. Herein, a brand-new method combining stretchable imprinting with colloidal lithography is figured out to fabricate deep-elliptical-silver-nanowell arrays (d-EAgNWAs). In this method, large area highly ordered silicon nanopillar arrays fabricated by colloidal lithography were taken as a master to transfer large area polydimethylsiloxane (PDMS) nanohole arrays. Benefit from the high elasticity of PDMS mold, the aspect ratio of d-EAgNWAs achieved can be facilely regulated from 1.7 to 5.0. Through optimization of polarization direction and the structural parameters including nanowell depth, aspect ratio, and hole size, the sensing performance of d-EAgNWAs was finally improved up to 1,414.1 nm/RIU. The best sensing behaved d-EAgNWAs were employed as an immunoassay platform finally to prove their great potential in label-free biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, J.; Li, Z. Y.; Sun, Y. H.; Zhong, L. B.; Huang, J.; Zhang, J. C.; Liang, Z. Q.; Chen, J. M.; Jiang, L. Uniform and reproducible plasmon-enhanced fluorescence substrate based on PMMA-coated, large-area Au@Ag nanorod arrays. Nano Res. 2018, 11, 953–965.

    Article  Google Scholar 

  2. Yang, P. P.; Zheng, J. Z.; Xu, Y.; Zhang, Q.; Jiang, L. Colloidal synthesis and applications of plasmonic metal nanoparticles. Adv. Mater. 2016, 28, 10508–10517.

    Article  Google Scholar 

  3. Baldassarre, L.; Sakat, E.; Frigerio, J.; Samarelli, A.; Gallacher, K.; Calandrini, E.; Isella, G.; Paul, D. J.; Ortolani, M.; Biagioni, P. Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates. Nano Lett. 2015, 15, 7225–7231.

    Article  Google Scholar 

  4. Ma, R. M.; Ota, S.; Li, Y. M.; Yang, S.; Zhang, X. Explosives detection in a lasing plasmon nanocavity. Nat. Nanotechnol. 2014, 9, 600–604.

    Article  Google Scholar 

  5. Li, D.; Song, S. P.; Fan, C. H. Target-responsive structural switching for nucleic acid-based sensors. Acc. Chem. Res. 2010, 43, 631–641.

    Article  Google Scholar 

  6. Du, J. J.; Jiang, J.; Shao, Q.; Liu, X. G.; Marks, R. S.; Ma, J.; Chen, X. D. Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small 2013, 9, 1467–1481.

    Article  Google Scholar 

  7. Yanik, A. A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T. W.; Connor, J. H.; Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010, 10, 4962–4969.

    Article  Google Scholar 

  8. Brolo, A. G. Plasmonics for future biosensors. Nat. Photonics 2012, 6, 709–713.

    Article  Google Scholar 

  9. Guo, L. H.; Jackman, J. A.; Yang, H. H.; Chen, P.; Cho, N. J.; Kim, D. H. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 2015, 10, 213–239.

    Article  Google Scholar 

  10. Kabashin, A. V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G. A.; Atkinson, R.; Pollard, R.; Podolskiy, V. A.; Zayats, A. V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871.

    Article  Google Scholar 

  11. Wu, C. H.; Khanikaev, A. B.; Adato, R.; Arju, N.; Yanik, A. A.; Altug, H.; Shvets, G. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 2012, 11, 69–75.

    Article  Google Scholar 

  12. Stockman, M. I. Nanoplasmonic sensing and detection. Science 2015, 348, 287–288.

    Article  Google Scholar 

  13. Jin Y. D. Engineering plasmonic gold nanostructures and metamaterials for biosensing and nanomedicine. Adv. Mater. 2012, 24, 5153–5165.

    Article  Google Scholar 

  14. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

    Google Scholar 

  15. Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.

    Article  Google Scholar 

  16. Zeng, S. W.; Baillargeat, D.; Hod, H. P.; Yong, K. T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452.

    Article  Google Scholar 

  17. Jiang, L.; Chen, X. D.; Lu, N.; Chi, L. F. Spatially confined assembly of nanoparticles. Acc. Chem. Res. 2014, 47, 3009–3017.

    Article  Google Scholar 

  18. Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636.

    Article  Google Scholar 

  19. Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G. A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res. 2008, 41, 1049–1057.

    Article  Google Scholar 

  20. Ye, S. S.; Zhang, X. M.; Chang, L. X.; Wang, T. Q.; Li, Z. B.; Zhang, J. H.; Yang, B. High-performance plasmonic sensors based on two-dimensional Ag nanowell crystals. Adv. Opt. Mater. 2014, 2, 779–787.

    Article  Google Scholar 

  21. Im, H.; Lindquist, N. C.; Lesuffleur, A.; Oh, S. H. Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. ACS Nano 2010, 4, 947–954.

    Article  Google Scholar 

  22. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

    Article  Google Scholar 

  23. Yanik, A. A.; Cetin, A. E.; Huang, M.; Artar, A.; Mousavi, S. H.; Khanikaev, A.; Connor, J. H.; Shvets, G.; Altug, H. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. USA 2011, 108, 11784–11789.

    Article  Google Scholar 

  24. Rindzevicius, T.; Alaverdyan, Y.; Dahlin, A.; Höök, F.; Sutherland, D. S.; Käll, M. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005, 5, 2335–2339.

    Article  Google Scholar 

  25. Wu, L. Y.; Ross, B. M.; Lee, L. P. Optical properties of the crescentshaped nanohole antenna. Nano Lett. 2009, 9, 1956–1961.

    Article  Google Scholar 

  26. Bukasov, R.; Shumaker-Parry, J. S. Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett. 2007, 7, 1113–1118.

    Article  Google Scholar 

  27. Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348.

    Article  Google Scholar 

  28. Zhang, Y.; Zhen, Y. R.; Neumann, O.; Day, J. K.; Nordlander, P,; Halas, N. J. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 2014, 5, 4424.

    Article  Google Scholar 

  29. Yang, S. C.; Hou, J. L.; Finn, A.; Kumar, A.; Ge, Y.; Fischer, W. J. Synthesis of multifunctional plasmonic nanopillar array using soft thermal nanoimprint lithography for highly sensitive refractive index sensing. Nanoscale 2015, 7, 5760–5766.

    Article  Google Scholar 

  30. Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669.

    Article  Google Scholar 

  31. Li, J.; Iu, H.; Wan, J. T. K.; Ong, H. C. The plasmonic properties of elliptical metallic hole arrays. Appl. Phys. Lett. 2009, 94, 033101.

    Article  Google Scholar 

  32. Cervantes Tellez, G. A.; Hassan, S.; Tait, R. N.; Berini, P.; Gordon, R. Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing. Lab Chip 2013, 13, 2541–2546.

    Article  Google Scholar 

  33. Kang, L.; Lan, S. F.; Cui, Y. H.; Rodrigues, S. P.; Liu, Y. M.; Werner, D. H.; Cai, W. S. An active metamaterial platform for chiral responsive optoelectronics. Adv. Mater. 2015, 27, 4377–4383.

    Article  Google Scholar 

  34. Gordon, R.; Hughes, M.; Leathem, B.; Kavanagh, K. L.; Brolo, A. G. Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film. Nano Lett. 2005, 5, 1243–1246.

    Article  Google Scholar 

  35. Lovera, P.; Jones, D.; Corbett, B.; O’Riordan, A. Polarization tunable transmission through plasmonic arrays of elliptical nanopores. Opt. Express 2012, 20, 25325–25332.

    Article  Google Scholar 

  36. Gordon, R.; Brolo, A. G.; McKinnon, A.; Rajora, A.; Leathem, B.; Kavanagh, K. L. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 2004, 92, 037401.

    Article  Google Scholar 

  37. Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.

    Article  Google Scholar 

  38. Fredriksson, H.; Alaverdyan, Y.; Dmitriev, A.; Langhammer, C.; Sutherland, D. S.; Zäch, M.; Kasemo, B. Hole-mask colloidal lithography. Adv. Mater. 2007, 19, 4297–4302.

    Article  Google Scholar 

  39. Larsson, E. M.; Alegret, J.; Käll, M.; Sutherland, D. S. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007, 7, 1256–1263.

    Article  Google Scholar 

  40. Langhammer, C.; Schwind, M.; Kasemo, B.; Zorić, I. Localized surface Plasmon resonances in aluminum nanodisks. Nano Lett. 2008, 8, 1461–1471.

    Article  Google Scholar 

  41. Li, Y. F.; Zhang, J. H.; Yang, B. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today 2010, 5, 117–127.

    Article  Google Scholar 

  42. Choi, D. G.; Yu, H. K.; Jang, S. G.; Yang, S. M. Colloidal lithographic nanopatterning via reactive ion etching. J. Am. Chem. Soc. 2004, 126, 7019–7025.

    Article  Google Scholar 

  43. Li, Y.; Duan, G. T.; Liu, G. Q.; Cai, W. P. Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: Fabrication and applications. Chem. Soc. Rev. 2013, 42, 3614–3627.

    Article  Google Scholar 

  44. Lee, S. H.; Bantz, K. C.; Lindquist, N. C.; Oh, S. H.; Haynes, C. L. Selfassembled plasmonic nanohole arrays. Langmuir 2009, 25, 13685–13693.

    Article  Google Scholar 

  45. Ai, B.; Basnet, P.; Larson, S.; Ingram, W.; Zhao, Y. P. Plasmonic sensor with high figure of merit based on differential polarization spectra of elliptical nanohole array. Nanoscale 2017, 9, 14710–14721.

    Article  Google Scholar 

  46. Chang, Y. C.; Lu, S. C.; Chung, H. C.; Wang, S. M.; Tsai, T. D.; Guo, T. F. High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography. Sci. Rep. 2013, 3, 3339.

    Article  Google Scholar 

  47. Wang, T. Q.; Li, X.; Zhang, J. H.; Ren, Z. Y.; Zhang, X. M.; Zhang, X.; Zhu, D. F.; Wang, Z. H.; Han, F.; Wang, X. Z. et al. Morphology-controlled two-dimensional elliptical hemisphere arrays fabricated by a colloidal crystal based micromolding method. J. Mater. Chem. 2010, 20, 152–158.

    Article  Google Scholar 

  48. Cai, Y. J.; Li, Y.; Nordlander, P.; Cremer P. S. Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances. Nano Lett. 2012, 12, 4881–4888.

    Article  Google Scholar 

  49. Liu, X. Y.; Liu, W. D.; Fang, L. P.; Ye, S. S.; Shen, H. Z.; Yang, B. Highly sensitive deep-silver-nanowell arrays (d-AgNWAs) for refractometric sensing. Nano Res. 2017, 10, 908–921.

    Article  Google Scholar 

  50. Si, S. R.; Liang, W. K.; Sun, Y. H.; Huang, J.; Ma, W. L.; Liang, Z. Q.; Bao, Q. L.; Jiang, L. Facile fabrication of high-density sub-1-nm gaps from Au nanoparticle monolayers as reproducible SERS substrates. Adv. Funct. Mater. 2016, 26, 8137–8145.

    Article  Google Scholar 

  51. Chen, J. M.; Sun, Y. H.; Zhong, L. B.; Shao, W. J.; Huang, J.; Liang, F.; Cui, Z. Q.; Liang, Z. Q.; Jiang, L.; Chi, L. F. Scalable fabrication of multiplexed plasmonic nanoparticle structures based on AFM lithography. Small 2016, 12, 5818–5825.

    Article  Google Scholar 

  52. Fang, Z. Y.; Cai, J. Y.; Yan, Z. B.; Nordlander, P.; Halas, N. J.; Zhu, X. Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett. 2011, 11, 4475–4479.

    Article  Google Scholar 

  53. Valsecchi, C.; Brolo, A. G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 2013, 29, 5638–5649.

    Article  Google Scholar 

  54. McFarland, A. D.; Van Duyne, R. P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003, 3, 1057–1062.

    Article  Google Scholar 

  55. Kumari, S.; Moirangthem, R. S. Portable and economical plasmonic capillary sensor for biomolecular detection. Sens. Actuators B Chem. 2016, 231, 203–210.

    Article  Google Scholar 

  56. Abadeer, N. S.; Fulop, G.; Chen, S.; Käll, M.; Murphy, C. J. Interactions of bacterial lipopolysaccharides with gold nanorod surfaces investigated by refractometric sensing. ACS Appl. Mater. Interfaces 2015, 7, 24915–24925.

    Article  Google Scholar 

  57. Jeong, H. H.; Mark, A. G.; Alarcón-Correa, M.; Kim, I.; Oswald, P.; Lee, T. C.; Fischer, P. Dispersion and shape engineered plasmonic nanosensors. Nat. Commun. 2016, 7, 11331.

    Article  Google Scholar 

  58. Lisboa, P.; Valsesia, A.; Mannelli, I.; Mornet, S.; Colpo, P.; Rossi, F. Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols. Adv. Mater. 2008, 20, 2352–2358.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51433003), the National Key Research and Development Program of China (No. 2016YFB0401701) and JLU Science and Technology Innovative Research Team 2017TD-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai Yang.

Electronic supplementary material

12274_2019_2302_MOESM1_ESM.pdf

Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, W. & Yang, B. Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform. Nano Res. 12, 845–853 (2019). https://doi.org/10.1007/s12274-019-2302-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2302-2

Keywords

Navigation