Skip to main content
Log in

Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transition metal diselenides are promising electrocatalysts for hydrogen evolution and therefore different approaches have been proposed to enhance their catalytic activity. Herein, we describe systematic studies of the dependence of transition-metal doping on the catalytic activity of NiSe2 by first principles calculations, where Fe is demonstrated to be the best candidate element to tune the electrocatalytic activity of NiSe2 with lower ΔGH* values and increased electrical conductivity. To provide further experimental evidence, Fe-doped NiSe2 porous nanosheets grown on carbon cloth are successfully developed. These nanosheets show significantly improved efficiency for hydrogen evolution reactions compared to their un-doped counterpart. The optimized Ni0.8Fe0.2Se2 electrocatalyst gives rise to a current density of 10 mA·cm-2 at a very low overpotential of 64 mV with outstanding long-term stability. The present strategy of doping NiSe2 -based electrocatalysts with transition metals paves a new pathway for the design and synthesis of electrocatalysts for large-scale electrochemical energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  Google Scholar 

  2. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  Google Scholar 

  3. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  Google Scholar 

  4. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  Google Scholar 

  5. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  6. Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.

    Article  Google Scholar 

  7. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  Google Scholar 

  8. Zeng, M.; Li, Y. G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A. 2015, 3, 14942–14962.

    Article  Google Scholar 

  9. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I. B.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    Article  Google Scholar 

  10. Li, Y. H.; Liu, P. F.; Pan, L. F.; Wang, H. F.; Yang, Z. Z.; Zheng, L. R.; Hu, P.; Zhao, H. J.; Gu, L.; Yang, H. G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun. 2015, 6, 8064.

    Article  Google Scholar 

  11. Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

    Article  Google Scholar 

  12. Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed. 2012, 51, 12495–12498.

    Article  Google Scholar 

  13. Feng, J. X.; Ding, L. X.; Ye, S. H.; He, X. J.; Xu, H.; Tong, Y. X.; Li, G. R. Co(OH)2@PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2015, 27, 7051–7057.

    Article  Google Scholar 

  14. Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogenevolution catalysts based on non-noble metal nickelmolybdenum nitride nanosheets. Angew. Chem., Int. Ed. 2012, 51, 6131–6135.

    Article  Google Scholar 

  15. Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896–8909.

    Article  Google Scholar 

  16. Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192.

    Article  Google Scholar 

  17. Xing, Z. C.; Liu, Q.; Asiri, A. M.; Sun, X. P. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702–5707.

    Article  Google Scholar 

  18. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

    Article  Google Scholar 

  19. Xiao, P.; Chen, W.; Wang, X. A review of phosphidebased materials for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2015, 5, 1500985.

    Article  Google Scholar 

  20. Hai, X.; Zhou, W.; Wang, S. Y.; Pang, H.; Chang, K.; Ichihara, F.; Ye, J. H. Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction. Nano Energy 2017, 39, 409–417.

    Article  Google Scholar 

  21. Zhang, J. Y.; Xiao, B. R.; Liu, X. L.; Liu, P. T.; Xi, P. X.; Xiao, W.; Ding, J.; Gao, D. Q.; Xue, D. S. Copper dopants improved the hydrogen evolution activity of earth-abundant cobalt pyrite catalysts by activating the electrocatalytically inert sulfur sites. J. Mater. Chem. A. 2017, 5, 17601–17608.

    Article  Google Scholar 

  22. Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.

    Article  Google Scholar 

  23. Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515–2525.

    Article  Google Scholar 

  24. Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555.

    Article  Google Scholar 

  25. Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H. An efficient molybdenum disulfide/ cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.

    Article  Google Scholar 

  26. Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558.

    Article  Google Scholar 

  27. Carim, A. I.; Saadi, F. H.; Soriaga, M. P.; Lewis, N. S. Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films. J. Mater. Chem. A 2014, 2, 13835–13839.

    Article  Google Scholar 

  28. Liu, X.; Zhang, J. Z.; Huang, K. J.; Hao, P. Net-like molybdenum selenide–acetylene black supported on Ni foam for high-performance supercapacitor electrodes and hydrogen evolution reaction. Chem. Eng. J. 2016, 302, 437–445.

    Article  Google Scholar 

  29. Yu, B.; Qi, F.; Chen, Y. F.; Wang, X. Q.; Zheng, B. J.; Zhang, W. L.; Li, Y. R.; Zhang, L. C. Nanocrystalline Co0.85Se anchored on graphene nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 30703–30710.

    Article  Google Scholar 

  30. Yu, B.; Qi, F.; Zheng, B. J.; Hou, W. Q.; Zhang, W. L.; Li, Y. R.; Chen, Y. F. Self-assembled pearl-bracelet-like CoSe2–SnSe2/CNT hollow architecture as highly efficient electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 1655–1662.

    Article  Google Scholar 

  31. Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.

    Article  Google Scholar 

  32. Zhou, H. Q.; Wang, Y. M.; He, R.; Yu, F.; Sun, J. Y.; Wang, F.; Lan, Y. C.; Ren, Z. F.; Chen, S. One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: An efficient 3D electrode for hydrogen evolution reaction. Nano Energy 2016, 20, 29–36.

    Article  Google Scholar 

  33. Pu, Z. H.; Luo, Y. L.; Asiri, A. M.; Sun, X. P. Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film. ACS Appl. Mater. Interfaces 2016, 8, 4718–4723.

    Article  Google Scholar 

  34. Zhang, J.; Wang, Y.; Zhang, C.; Gao, H.; Lv, L. F.; Han, L. L.; Zhang, Z. H. Self-supported porous NiSe2 nanowrinkles as efficient bifunctional electrocatalysts for overall water splitting. ACS Sustainable Chem. Eng. 2018, 6, 2231–2239.

    Article  Google Scholar 

  35. Zhang, S.; Zhang, X. Y.; Li, J.; Wang, E. K. Morphological and electronic modulation of NiSe nanosheet assemblies by Mo, S-codoping for an efficient hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 20588–20593.

    Article  Google Scholar 

  36. Ming, F. W.; Liang, H. F.; Shi, H. H.; Xu, X.; Mei, G.; Wang, Z. C. MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J. Mater. Chem. A 2016, 4, 15148–15155.

    Article  Google Scholar 

  37. Yu, B.; Wang, X. Q.; Qi, F.; Zheng, B. J.; He, J. R.; Lin, J.; Zhang, W. L.; Li, Y. R.; Chen, Y. F. Self-assembled corallike hierarchical architecture constructed by NiSe2 nanocrystals with comparable hydrogen-evolution performance of precious platinum catalyst. ACS Appl. Mater. Interfaces 2017, 9, 7154–7159.

    Article  Google Scholar 

  38. Zhou, H. Q.; Yu, F.; Sun, J. Y.; Zhu, H. T.; Mishra, I. K.; Chen, S.; Ren, Z. F. Highly efficient hydrogen evolution from edge-oriented WS2(1–x)Se2x particles on three-dimensional porous NiSe2 foam. Nano Lett. 2016, 16, 7604–7609.

    Article  Google Scholar 

  39. Zhang, L.; Wang, T.; Sun, L.; Sun, Y. J.; Hu, T. W.; Xu, K. W.; Ma, F. Hydrothermal synthesis of 3D hierarchical MoSe2/NiSe2 composite nanowires on carbon fiber paper and their enhanced electrocatalytic activity for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 19752–19759.

    Article  Google Scholar 

  40. Wang, B.; Wang, X. Q.; Zheng, B. J.; Yu, B.; Qi, F.; Zhang, W. L.; Li, Y. R.; Chen, Y. F. NiSe2 nanoparticles embedded in CNT networks: Scalable synthesis and superior electrocatalytic activity for the hydrogen evolution reaction. Electrochem. Commun. 2017, 83, 51–55.

    Article  Google Scholar 

  41. Song, D. Y.; Wang, H. Q.; Wang, X. Q.; Yu, B.; Chen, Y. F. NiSe2 nanoparticles embedded in carbon nanowires as highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2017, 254, 230–237.

    Article  Google Scholar 

  42. Hou, W. Q.; Yu, B.; Qi, F.; Wang, X. Q.; Zheng, B. J.; Zhang, W. L.; Li, Y. R.; Chen, Y. F. Scalable synthesis of graphenewrapped CoSe2-SnSe2 hollow nanoboxes as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2017, 255, 248–255.

    Article  Google Scholar 

  43. Liu, T. T.; Asiri, A. M.; Sun, X. P. Electrodeposited Co-doped NiSe2 nanoparticles film: A good electrocatalyst for efficient water splitting. Nanoscale 2016, 8, 3911–3915.

    Article  Google Scholar 

  44. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  45. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

    Article  Google Scholar 

  46. Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyritetype cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251.

    Article  Google Scholar 

  47. de las Heras, C.; Agulló-Rueda, F. Raman spectroscopy of NiSe2 and NiS2-xSex (0 < x > 2) thin films. J. Phys.: Condens. Matter 2000, 12, 5317–5324.

    Google Scholar 

  48. Wang, Z. Y.; Li, J. T.; Tian, X. C.; Wang, X. P.; Yu, Y.; Owusu, K. A.; He, L.; Mai, L. Q. Porous nickel-iron selenide nanosheets as highly efficient electrocatalysts for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 19386–19392.

    Article  Google Scholar 

  49. Du, Y. S.; Cheng, G. Z.; Luo, W. Colloidal synthesis of urchin-like Fe doped NiSe2 for efficient oxygen evolution. Nanoscale 2017, 9, 6821–6825.

    Article  Google Scholar 

  50. Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J. G.; Guan, M. Y.; Lin, M. C.; Zhang, B.; Hu, Y. F.; Wang, D. Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695.

    Article  Google Scholar 

  51. Yan, X. D.; Tian, L. H.; Chen, X. B. Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. J. Power Sources 2015, 300, 336–343.

    Article  Google Scholar 

  52. Chi, J. Q.; Yan, K. L.; Xiao, Z.; Dong, B.; Shang, X.; Gao, W. K.; Li, X.; Chai, Y. M.; Liu, C. G. Trimetallic Ni Fe Co selenides nanoparticles supported on carbon fiber cloth as efficient electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 20599–20607.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11474137 and 11674143), and Program for Changjiang Scholars and Innovative Research Team in University (IRT 16R35). J. W. thanks for the support of MOE (MOE2016-T2-2-138) for research conducted at the National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daqiang Gao or John Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Gao, D., Xiao, W. et al. Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Res. 11, 6051–6061 (2018). https://doi.org/10.1007/s12274-018-2122-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2122-9

Keywords

Navigation